Charles E. Via Jr. Department of Civil and Environmental Engineering
Permanent URI for this community
The Charles E. Via, Jr. Department of Civil and Environmental Engineering, which is ranked in the top 10 accredited civil and environmental engineering departments by the US News and World Report survey, is one of the largest programs in the United States. The Department has 46 full-time faculty, 657 undergraduate, and 400 graduate students. Civil engineers are the principal designers, constructors, operators, and caretakers of many of the constructed facilities and systems that contribute to the high quality of life enjoyed in the United States. The Charles E. Via, Jr. Department of Civil and Environmental Engineering offers educational programs in all areas of civil engineering practice.
Browse
Browsing Charles E. Via Jr. Department of Civil and Environmental Engineering by Department "Computer Science"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- AgroSeek: a system for computational analysis of environmental metagenomic data and associated metadataLiang, Xiao; Akers, Kyle; Keenum, Ishi M.; Wind, Lauren L.; Gupta, Suraj; Chen, Chaoqi; Aldaihani, Reem; Pruden, Amy; Zhang, Liqing; Knowlton, Katharine F.; Xia, Kang; Heath, Lenwood S. (2021-03-10)Background Metagenomics is gaining attention as a powerful tool for identifying how agricultural management practices influence human and animal health, especially in terms of potential to contribute to the spread of antibiotic resistance. However, the ability to compare the distribution and prevalence of antibiotic resistance genes (ARGs) across multiple studies and environments is currently impossible without a complete re-analysis of published datasets. This challenge must be addressed for metagenomics to realize its potential for helping guide effective policy and practice measures relevant to agricultural ecosystems, for example, identifying critical control points for mitigating the spread of antibiotic resistance. Results Here we introduce AgroSeek, a centralized web-based system that provides computational tools for analysis and comparison of metagenomic data sets tailored specifically to researchers and other users in the agricultural sector interested in tracking and mitigating the spread of ARGs. AgroSeek draws from rich, user-provided metagenomic data and metadata to facilitate analysis, comparison, and prediction in a user-friendly fashion. Further, AgroSeek draws from publicly-contributed data sets to provide a point of comparison and context for data analysis. To incorporate metadata into our analysis and comparison procedures, we provide flexible metadata templates, including user-customized metadata attributes to facilitate data sharing, while maintaining the metadata in a comparable fashion for the broader user community and to support large-scale comparative and predictive analysis. Conclusion AgroSeek provides an easy-to-use tool for environmental metagenomic analysis and comparison, based on both gene annotations and associated metadata, with this initial demonstration focusing on control of antibiotic resistance in agricultural ecosystems. Agroseek creates a space for metagenomic data sharing and collaboration to assist policy makers, stakeholders, and the public in decision-making. AgroSeek is publicly-available at https://agroseek.cs.vt.edu/ .
- MetaCompare: a computational pipeline for prioritizing environmental resistome riskOh, Min; Pruden, Amy; Chen, Chaoqi; Heath, Lenwood S.; Xia, Kang; Zhang, Liqing (2018-07)The spread of antibiotic resistance is a growing public health concern. While numerous studies have highlighted the importance of environmental sources and pathways of the spread of antibiotic resistance, a systematic means of comparing and prioritizing risks represented by various environmental compartments is lacking. Here, we introduce MetaCompare, a publicly available tool for ranking 'resistome risk', which we define as the potential for antibiotic resistance genes (ARGs) to be associated with mobile genetic elements (MGEs) and mobilize to pathogens based on metagenomic data. A computational pipeline was developed in which each ARG is evaluated based on relative abundance, mobility, and presence within a pathogen. This is determined through the assembly of shotgun sequencing data and analysis of contigs containing ARGs to determine if they contain sequence similarity to MGEs or human pathogens. Based on the assembled metagenomes, samples are projected into a 3-dimensionalhazard space and assigned resistome risk scores. To validate, we tested previously published metagenomic data derived from distinct aquatic environments. Based on unsupervised machine learning, the test samples clustered in the hazard space in a manner consistent with their origin. The derived scores produced a well-resolved ascending resistome risk ranking of: wastewater treatment plant effluent, dairy lagoon, and hospital sewage.
- Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genesGarner, Emily; Wallace, Joshua S.; Arango-Argoty, Gustavo; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy (Nature Publishing Group, 2016-12-05)Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.
- NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomesArango-Argoty, Gustavo; Dai, Dongjuan; Pruden, Amy; Vikesland, Peter J.; Heath, Lenwood S.; Zhang, Liqing (2019-06-07)Background Direct and indirect selection pressures imposed by antibiotics and co-selective agents and horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective environmental monitoring tools should ideally capture not only antibiotic resistance genes (ARGs), but also mobile genetic elements (MGEs) and indicators of co-selective forces, such as metal resistance genes (MRGs). A major challenge towards characterizing the potential human health risk of antibiotic resistance is the ability to identify ARG-carrying microorganisms, of which human pathogens are arguably of greatest risk. Historically, short reads produced by next-generation sequencing technologies have hampered confidence in assemblies for achieving these purposes. Results Here, we introduce NanoARG, an online computational resource that takes advantage of the long reads produced by nanopore sequencing technology. Specifically, long nanopore reads enable identification of ARGs in the context of relevant neighboring genes, thus providing valuable insight into mobility, co-selection, and pathogenicity. NanoARG was applied to study a variety of nanopore sequencing data to demonstrate its functionality. NanoARG was further validated through characterizing its ability to correctly identify ARGs in sequences of varying lengths and a range of sequencing error rates. Conclusions NanoARG allows users to upload sequence data online and provides various means to analyze and visualize the data, including quantitative and simultaneous profiling of ARGs, MRGs, MGEs, and putative pathogens. A user-friendly interface allows users the analysis of long DNA sequences (including assembled contigs), facilitating data processing, analysis, and visualization. NanoARG is publicly available and freely accessible at https://bench.cs.vt.edu/nanoarg .