Center for Photonics Technology
Permanent URI for this community
The Center for Photonics Technology at Virginia Tech is focused on innovation in fiber optics, fiber optic sensors, and biomedical and applied optics. With five faculty and over 30 students and research staff, CPT is a world leader in fiber optic sensor research.
Browse
Browsing Center for Photonics Technology by Department "Materials Science and Engineering (MSE)"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Behavior of Random Hole Optical Fibers under Gamma Ray Irradiation and Its Potential Use in Radiation Sensing ApplicationsAlfeeli, Bassam; Pickrell, Gary R.; Garland, Marc; Wang, Anbo (MDPI, 2007-05-24)Effects of radiation on sensing and data transmission components are of greatinterest in many applications including homeland security, nuclear power generation, andmilitary. A new type of microstructured optical fiber (MOF) called the random hole opticalfiber (RHOF) has been recently developed. The RHOFs can be made in many differentforms by varying the core size and the size and extent of porosity in the cladding region.The fibers used in this study possessed an outer diameter of 110 _m and a core ofapproximately 20 _m. The fiber structure contains thousands of air holes surrounding thecore with sizes ranging from less than 100 nm to a few _m. We present the first study ofthe behavior of RHOF under gamma irradiation. We also propose, for the first time to ourknowledge, an ionizing radiation sensor system based on scintillation light from ascintillator phosphor embedded within a holey optical fiber structure. The RHOF radiationresponse was compared to normal single mode and multimode commercial fibers(germanium doped core, pure silica cladding) and to those of radiation resistant fibers (puresilica core with fluorine doped cladding fibers). The comparison was done by measuringradiation-induced absorption (RIA) in all fiber samples at the 1550 nm wavelength window(1545 25 nm). The study was carried out under a high-intensity gamma ray field from a 60Co source (with an exposure rate of 4x104 rad/hr) at an Oak Ridge National Laboratory gamma ray irradiation facility. Linear behavior, at dose values less than 106 rad, was observed in all fiber samples except in the pure silica core fluorine doped cladding fiber which showed RIA saturation at 0.01 dB. RHOF samples demonstrated low RIA (0.02 and 0.005 dB) compared to standard germanium doped core pure silica cladding (SMF and MMF) fibers. Results also showed the possibility of post-fabrication treatment to improve the radiation resistance of the RHOF fibers.
- Long Period Gratings in Random Hole Optical Fibers for Refractive Index SensingWang, Ke; Pickrell, Gary R. (MDPI, 2011-02-01)We have demonstrated the fabrication of long period gratings in random hole optical fibers. The long period gratings are fabricated by a point-by-point technique using a CO2 laser. The gratings with a periodicity of 450 µm are fabricated and a maximum coupling efficiency of −9.81 dB has been achieved. Sensing of different refractive indices in the surrounding mediums is demonstrated by applying standard liquids with refractive indices from 1.400 to 1.440 to the long period grating.
- Powder-in-Tube Reactive Molten-Core Fabrication of Glass-Clad BaO-TiO2-SiO2 Glass–Ceramic FibersYang, Shuo; Heyl, Hanna; Homa, Daniel S.; Pickrell, Gary R.; Wang, Anbo (MDPI, 2020-01-15)In this paper we report the fabrication of glass-clad BaO-TiO2-SiO2 (BTS) glass–ceramic fibers by powder-in-tube reactive molten-core drawing and successive isothermal heat treatment. Upon drawing, the inserted raw powder materials in the fused silica tubing melt and react with the fused silica tubing (housing tubing) via dissolution and diffusion interactions. During the drawing process, the fused silica tubing not only serves as a reactive crucible, but also as a fiber cladding layer. The formation of the BTS glass–ceramic structure in the core was verified by micro-Raman spectroscopy after the successive isothermal heat treatment. Second-harmonic generation and blue-white photoluminescence were observed in the fiber using 1064 nm and 266 nm picosecond laser irradiation, respectively. Therefore, the BTS glass–ceramic fiber is a promising candidate for all fiber based second-order nonlinear and photoluminescence applications. Moreover, the powder-in-tube reactive molten core method offers a more efficient and intrinsic contamination-free approach to fabricate glass–ceramic fibers.
- ZrO2 Thin-Film-Based Sapphire Fiber Temperature SensorWang, Jiajun; Lally, Evan M.; Wang, Xiaoping; Gong, Jianmin; Pickrell, Gary R.; Wang, Anbo (Optical Society of America, 2012-10-01)A submicrometer-thick zirconium dioxide film was deposited on the tip of a polished C-plane sapphire fiber to fabricate a temperature sensor that can work to an extended temperature range. Zirconium dioxide was selected as the thin film material to fabricate the temperature sensor because it has relatively close thermal expansion to that of sapphire, but more importantly it does not react appreciably with sapphire up to 1800 degrees C. In order to study the properties of the deposited thin film, ZrO2 was also deposited on C-plane sapphire substrates and characterized by x-ray diffraction for phase analysis as well as by atomic force microscopy for analysis of surface morphology. Using low-coherence optical interferometry, the fabricated thin-film-based sapphire fiber sensor was tested in the lab up to 1200 C and calibrated from 200 degrees to 1000 degrees C. The temperature resolution is determined to be 5.8 degrees C when using an Ocean Optics USB4000 spectrometer to detect the reflection spectra from the ZrO2 thin-film temperature sensor. (C) 2012 Optical Society of America OCIS codes: 060.2370, 120.6780, 310.1620.