Virginia Tech Patents
Permanent URI for this collection
These United States Patents were originally assigned to Virginia Tech.
Browse
Browsing Virginia Tech Patents by Department "Biomedical Engineering and Mechanics"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Flotation machine rotor(United States Patent and Trademark Office, 2016-02-23)A rotor for flotation machines or flotation cells of flotation machines includes blades that are configured to provide improved bubble flow and bubble generation performance while also reducing the power requirements for rotating the rotor to generate bubble flow within a tank of a flotation cell used to generate froth. Embodiments of the rotor may also be configured to be smaller than conventional rotor designs, which may help reduce the costs of manufacturing the rotor or flotation machines using such embodiments of the rotor.
- Irreversible electroporation to create tissue scaffolds(United States Patent and Trademark Office, 2017-03-21)The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
- Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds(United States Patent and Trademark Office, 2018-01-16)The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
- System and method for estimating a treatment volume for administering electrical-energy based therapies(United States Patent and Trademark Office, 2016-03-15)The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
- System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies(United States Patent and Trademark Office, 2018-11-06)Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.