Department of Aerospace and Ocean Engineering
Permanent URI for this community
Browse
Browsing Department of Aerospace and Ocean Engineering by Department "Civil and Environmental Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE CampaignBarbieri, Lindsay; Kral, Stephan T.; Bailey, Sean C. C.; Frazier, Amy E.; Jacob, Jamey D.; Reuder, Joachim; Brus, David; Chilson, Phillip B.; Crick, Christopher; Detweiler, Carrick; Doddi, Abhiram; Elston, Jack; Foroutan, Hosein; González-Rocha, Javier; Greene, Brian R.; Guzman, Marcelo I.; Houston, Adam L.; Islam, Ashraful; Kemppinen, Osku; Lawrence, Dale; Pillar-Little, Elizabeth A.; Ross, Shane D.; Sama, Michael P.; Schmale, David G. III; Schuyler, Travis J.; Shankar, Ajay; Smith, Suzanne W.; Waugh, Sean; Dixon, Cory; Borenstein, Steve; de Boer, Gijs (MDPI, 2019-05-10)Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.
- Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent StructuresNolan, Peter J.; Foroutan, Hosein; Ross, Shane D. (MDPI, 2020-02-06)Identifying atmospheric transport pathways is important to understand the effects of pollutants on weather, climate, and human health. The atmospheric wind field is variable in space and time and contains complex patterns due to turbulent mixing. In such a highly unsteady flow field, it can be challenging to predict material transport over a finite-time interval. Particle trajectories are often used to study how pollutants evolve in the atmosphere. Nevertheless, individual trajectories are sensitive to their initial conditions. Lagrangian Coherent Structures (LCSs) have been shown to form the template of fluid parcel motion in a fluid flow. LCSs can be characterized by special material surfaces that organize the parcel motion into ordered patterns. These key material surfaces form the core of fluid deformation patterns, such as saddle points, tangles, filaments, barriers, and pathways. Traditionally, the study of LCSs has looked at coherent structures derived from integrating the wind velocity field. It has been assumed that particles in the atmosphere will generally evolve with the wind. Recent work has begun to look at the motion of chemical species, such as water vapor, within atmospheric flows. By calculating the flux associated with each species, a new effective flux-based velocity field can be obtained for each species. This work analyzes generalized species-weighted coherent structures associated with various chemical species to find their patterns and pathways in the atmosphere, providing a new tool and language for the assessment of pollutant transport and patterns.