Virginia-Maryland College of Veterinary Medicine (VMCVM)
Permanent URI for this community
The Virginia-Maryland College of Veterinary Medicine is a two-state, three-campus professional school operated by the land-grant universities of Virginia Tech in Blacksburg and the University of Maryland at College Park. In addition to the main campus installation at Virginia Tech, the College also operates the Avrum Gudelsky Veterinary Center at College Park, and the Marion duPont Scott Equine Medical Center in Leesburg.
Browse
Browsing Virginia-Maryland College of Veterinary Medicine (VMCVM) by Department "Biomedical Sciences and Pathobiology"
Now showing 1 - 20 of 138
Results Per Page
Sort Options
- Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairmentsGreer, Kisha; Gudenschwager-Basso, Erwin K.; Kelly, Colin; Cash, Alison; Kowalski, Elizabeth A.; Cerna, Steven; Ocampo, Collin Tanchanco; Wang, Xia; Theus, Michelle H. (2020-09-21)Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f.(/f)/Tie2-Cre knockout compared to EphA4f.(/f) wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGF beta. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.
- Alantolactone Suppresses Proliferation and the Inflammatory Response in Human HaCaT Keratinocytes and Ameliorates Imiquimod-Induced Skin Lesions in a Psoriasis-Like Mouse ModelChuo, Wen-Ho; Tung, Yu-Tang; Wu, Chao-Liang; Bracci, Nicole R.; Chang, Yu-Kang; Huang, Hung-Yi; Lin, Chi-Chien (MDPI, 2021-06-25)Psoriasis is an immune-mediated inflammatory disease that affects 2% to 3% of the world population. Alantolactone, a sesquiterpene lactone, was isolated from Inula helenium and Radix inulae and has several biological effects, including antifungal, anthelmintic, antimicrobial, anti-inflammatory, antitrypanosomal, and anticancer properties. This study aimed to evaluate the antipsoriatic potential of alantolactone in vitro and in vivo and to explore its underlying mechanisms. These results showed that alantolactone significantly attenuated IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) cytokine-induced hyperproliferation in HaCaT keratinocytes. Moreover, M5 cytokines significantly upregulated the mRNA levels of TNF-α, IL-6, IL-1β, and IL-8. However, alantolactone attenuated the upregulation of these inflammatory cytokines. In addition, alantolactone was found to inhibit STAT3 phosphorylation and NF-κB p65 nuclear translocation in HaCaT keratinocytes. Furthermore, alantolactone treatment in mice significantly alleviated the severity of skin lesions (erythema, scaling and epidermal thickness, and inflammatory cell infiltration) and decreased the mRNA expression of inflammatory cytokines (e.g., TNF-α, IL-6, IL-1β, IL-8, IL-17A, and IL-23) in an IMQ-induced-like mouse model. Therefore, our new findings revealed that alantolactone alleviates psoriatic skin lesions by inhibiting inflammation, making it an attractive candidate for future development as an antipsoriatic agent.
- Alleviation of Collagen-Induced Arthritis by Crotonoside through Modulation of Dendritic Cell Differentiation and ActivationLin, Shih-Chao; Lin, Chi-Chien; Li, Shiming; Lin, Wan-Yi; Lehman, Caitlin W.; Bracci, Nicole R.; Tsai, Sen-Wei (MDPI, 2020-11-10)Crotonoside, a guanosine analog originally isolated from Croton tiglium, is reported to be a potent tyrosine kinase inhibitor with immunosuppressive effects on immune cells. Due to its potential immunotherapeutic effects, we aimed to evaluate the anti-arthritic activity of crotonoside and explore its immunomodulatory properties in alleviating the severity of arthritic symptoms. To this end, we implemented the treatment of crotonoside on collagen-induced arthritic (CIA) DBA/1 mice and investigated its underlying mechanisms towards pathogenic dendritic cells (DCs). Our results suggest that crotonoside treatment remarkably improved clinical arthritic symptoms in this CIA mouse model as indicated by decreased pro-inflammatory cytokine production in the serum and suppressed expression of co-stimulatory molecules, CD40, CD80, and MHC class II, on CD11c+ DCs from the CIA mouse spleens. Additionally, crotonoside treatment significantly reduced the infiltration of CD11c+ DCs into the synovial tissues. Our in vitro study further demonstrated that bone marrow-derived DCs (BMDCs) exhibited lower yield in numbers and expressed lower levels of CD40, CD80, and MHC-II when incubated with crotonoside. Furthermore, LPS-stimulated mature DCs exhibited limited capability to prime antigen-specific CD4+ and T-cell proliferation, cytokine secretions, and co-stimulatory molecule expressions when treated with crotonoside. Our pioneer study highlights the immunotherapeutic role of crotonoside in the alleviation of the CIA via modulation of pathogenic DCs, thus creating possible applications of crotonoside as an immunosuppressive agent that could be utilized and further explored in treating autoimmune disorders in the future.
- Alpha 1 Antitrypsin is an Inhibitor of the SARS-CoV-2–Priming Protease TMPRSS2Azouz, N. P.; Klingler, A. M.; Callahan, Victoria; Akhrymuk, Ivan V.; Elez, K.; Raich, L.; Henry, B. M.; Benoit, J. L.; Benoit, S. W.; Noé, F.; Kehn-Hall, Kylene; Rothenberg, M. E. (2021-01-01)Background: Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. Methods: We developed a cell-based assay to identify TMPRSS2 inhibitors. Inhibitory activity was established in SARS-CoV-2 viral load systems. Results: We identified the human extracellular serine protease inhibitor (serpin) alpha 1 anti-trypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. Conclusions: Our data support the key role of extracellular serine proteases in SARS CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells.
- Altered toxicological endpoints in humans from common quaternary ammonium compound disinfectant exposureHrubec, Terry C.; Seguin, Ryan P.; Xu, L.; Cortopassi, G. A.; Datta, S.; Hanlon, Alexandra L.; Lozano, A. J.; McDonald, V. A.; Healy, C. A.; Anderson, T. C.; Musse, N. A.; Williams, R. T. (Elsevier, 2021-01-01)Humans are frequently exposed to Quaternary Ammonium Compounds (QACs). QACs are ubiquitously used in medical settings, restaurants, and homes as cleaners and disinfectants. Despite their prevalence, nothing is known about the health effects associated with chronic low-level exposure. Chronic QAC toxicity, only recently identified in mice, resulted in developmental, reproductive, and immune dysfunction. Cell based studies indicate increased inflammation, decreased mitochondrial function, and disruption of cholesterol synthesis. If these findings translate to human toxicity, multiple physiological processes could be affected. This study tested whether QAC concentrations could be detected in the blood of 43 human volunteers, and whether QAC concentrations influenced markers of inflammation, mitochondrial function, and cholesterol synthesis. QAC concentrations were detected in 80 % of study participants. Blood QACs were associated with increase in inflammatory cytokines, decreased mitochondrial function, and disruption of cholesterol homeostasis in a dose dependent manner. This is the first study to measure QACs in human blood, and also the first to demonstrate statistically significant relationships between blood QAC and meaningful health related biomarkers. Additionally, the results are timely in light of the increased QAC disinfectant exposure occurring due to the SARS-CoV-2 pandemic. Main Findings: This study found that 80 % of study participants contained QACs in their blood; and that markers of inflammation, mitochondrial function, and sterol homeostasis varied with blood QAC concentration.
- Antibiotics ameliorate lupus-like symptoms in miceMu, Qinghui; Tavella, Vincent J.; Kirby, Jay L.; Cecere, Thomas E.; Chung, Matthias; Lee, Jiyoung; Li, Song; Ahmed, Sattar Ansar; Eden, Kristin; Allen, Irving C. (Nature, 2017-10-20)Gut microbiota and the immune system interact to maintain tissue homeostasis, but whether this interaction is involved in the pathogenesis of systemic lupus erythematosus (SLE) is unclear. Here we report that oral antibiotics given during active disease removed harmful bacteria from the gut microbiota and attenuated SLE-like disease in lupus-prone mice. Using MRL/lpr mice, we showed that antibiotics given after disease onset ameliorated systemic autoimmunity and kidney histopathology. They decreased IL-17-producing cells and increased the level of circulating IL-10. In addition, antibiotics removed Lachnospiraceae and increased the relative abundance of Lactobacillus spp., two groups of bacteria previously shown to be associated with deteriorated or improved symptoms in MRL/lpr mice, respectively. Moreover, we showed that the attenuated disease phenotype could be recapitulated with a single antibiotic vancomycin, which reshaped the gut microbiota and changed microbial functional pathways in a time-dependent manner. Furthermore, vancomycin treatment increased the barrier function of the intestinal epithelium, thus preventing the translocation of lipopolysaccharide, a cell wall component of Gram-negative Proteobacteria and known inducer of lupus in mice, into the circulation. These results suggest that mixed antibiotics or a single antibiotic vancomycin ameliorate SLE-like disease in MRL/lpr mice by changing the composition of gut microbiota.
- The Application of a Nanomaterial Optical Fiber Biosensor Assay for Identification of Brucella NomenspeciesMcCutcheon, Kelly; Bandara, Aloka B.; Zuo, Ziwei; Heflin, James R.; Inzana, Thomas J. (MDPI, 2019-05-21)Bacteria in the genus Brucella are the cause of brucellosis in humans and many domestic and wild animals. A rapid and culture-free detection assay to detect Brucella in clinical samples would be highly valuable. Nanomaterial optical fiber biosensors (NOFS) are capable of recognizing DNA hybridization events or other analyte interactions with high specificity and sensitivity. Therefore, a NOFS assay was developed to detect Brucella DNA from cultures and in tissue samples from infected mice. An ionic self-assembled multilayer (ISAM) film was coupled to a long-period grating optical fiber, and a nucleotide probe complementary to the Brucella IS711 region and modified with biotin was bound to the ISAM by covalent conjugation. When the ISAM/probe duplex was exposed to lysate containing ≥100 killed cells of Brucella, or liver or spleen tissue extracts from Brucella-infected mice, substantial attenuation of light transmission occurred, whereas exposure of the complexed fiber to non-Brucella gram-negative bacteria or control tissue samples resulted in negligible attenuation of light transmission. Oligonucleotide probes specific for B. abortus, B. melitensis, and B. suis could also be used to detect and differentiate these three nomenspecies. In summary, the NOFS biosensor assay detected three nomenspecies of Brucella without the use of polymerase chain reaction within 30 min and could specifically detect low numbers of this bacterium in clinical samples.
- Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugsEldesouky, Hassan E.; Lanman, Nadia A.; Hazbun, Tony R.; Seleem, Mohamed N. (Taylor & Francis, 2020-01-01)With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
- ASC-Mediated Inflammation and Pyroptosis Attenuates Brucella abortus Pathogenesis Following the Recognition of gDNATupik, Juselyn D.; Coutermarsh-Ott, Sheryl; Benton, Angela H.; King, Kellie A.; Kiryluk, Hanna D.; Caswell, Clayton C.; Allen, Irving C. (MDPI, 2020-11-30)Brucella abortus is a zoonotic pathogen that causes brucellosis. Because of Brucella’s unique LPS layer and intracellular localization predominately within macrophages, it can often evade immune detection. However, pattern recognition receptors are capable of sensing Brucella pathogen-associated molecular patterns (PAMPS). For example, NOD-like receptors (NLRs) can form a multi-protein inflammasome complex to attenuate Brucella pathogenesis. The inflammasome activates IL-1β and IL-18 to drive immune cell recruitment. Alternatively, inflammasome activation also initiates inflammatory cell death, termed pyroptosis, which augments bacteria clearance. In this report, we assess canonical and non-canonical inflammasome activation following B. abortus infection. We conducted in vivo studies using Asc−/− mice and observed decreased mouse survival, immune cell recruitment, and increased bacteria load. We also conducted studies with Caspase-11−/− mice and did not observe any significant impact on B. abortus pathogenesis. Through mechanistic studies using Asc−/− macrophages, our data suggests that the protective role of ASC may result from the induction of pyroptosis through a gasdermin D-dependent mechanism in macrophages. Additionally, we show that the recognition of Brucella is facilitated by sensing the PAMP gDNA rather than the less immunogenic LPS. Together, these results refine our understanding of the role that inflammasome activation and pyroptosis plays during brucellosis.
- Better understanding and prediction of antiviral peptides through primary and secondary structure feature importanceChowdhury, Abu Sayed; Reehl, Sarah M.; Kehn-Hall, Kylene; Bishop, Barney M.; Webb-Robertson, Bobbie-Jo M. (2020-11-06)The emergence of viral epidemics throughout the world is of concern due to the scarcity of available effective antiviral therapeutics. The discovery of new antiviral therapies is imperative to address this challenge, and antiviral peptides (AVPs) represent a valuable resource for the development of novel therapies to combat viral infection. We present a new machine learning model to distinguish AVPs from non-AVPs using the most informative features derived from the physicochemical and structural properties of their amino acid sequences. To focus on those features that are most likely to contribute to antiviral performance, we filter potential features based on their importance for classification. These feature selection analyses suggest that secondary structure is the most important peptide sequence feature for predicting AVPs. Our Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction (FIRM-AVP) approach achieves a higher accuracy than either the model with all features or current state-of-the-art single classifiers. Understanding the features that are associated with AVP activity is a core need to identify and design new AVPs in novel systems. The FIRM-AVP code and standalone software package are available at https://github.com/pmartR/FIRM-AVP with an accompanying web application at https://msc-viz.emsl.pnnl.gov/AVPR.
- Brucella abortus RB51 ΔleuB expressing Salmonella FliC conjugated gonadotropins reduces mouse fetal numbers: A possible feral swine brucellosis immunocontraceptive vaccineWaldrop, Steven Grant; Smith, Garrett P.; Boyle, Stephen M.; Sriranganathan, Nammalwar (2021-02)Population and health management of wildlife is a key to environmental health, domestic herd health, and ultimately public health. Many different methods including: surgical sterilization, poison baits, and sponsored hunting programs have been used in the attempt to control populations of various nuisance animal species. Particular interest has been given to immunocontraception through wildlife vaccination protocols. This study specifically looked at the potential immunocontraceptive and protective properties of a Brucella abortus RB51 Delta leuB vaccine expressing Salmonella typhimurium FliC conjugated to porcine follicle stimulating hormone beta subunit (FSH beta) or gonadotropin releasing hormone (GnRH) DNA sequences. B. abortus RB51 Delta leuB pNS4-TrcD-FliC-FSH beta (RB51LFSH beta) and B. abortus RB51 Delta leuB pNS4-TrcD-FliC-GnRH (RB51LGnRH) were tested in a pilot breeding study with BALB/c mice, and a significant reduction in fertility characteristics was observed in both male and female mice. Ultimately, this study provides support to test these vaccine candidates in feral swine, a destructive invasive species in the United States of America.
- Canine Cancer Screening Via Ultraviolet Absorbance And Fluorescence Spectroscopy Of Serum ProteinsDickerson, Bryan Douglas; Geist, Brian L.; Spillman, William B. Jr.; Robertson, John L. (Optical Society of America, 2007-01-01)A cost-effective optical cancer screening and monitoring technique was demonstrated in a pilot study of canine serum samples and was patented for commercialization. Compared to conventional blood chemistry analysis methods, more accurate estimations of the concentrations of albumin, globulins, and hemoglobin in serum were obtained by fitting the near UV absorbance and photoluminescence spectra of diluted serum as a linear combination of component reference spectra. Tracking these serum proteins over the course of treatment helped to monitor patient immune response to carcinoma and therapy. For cancer screening, 70% of dogs with clinical presentation of cancer displayed suppressed serum hemoglobin levels (below 20 mg/dL) in combination with atypical serum protein compositions, that is, albumin levels outside of a safe range (from 4 to 8 g/dL) and globulin levels above or below a more normal range (from 1.7 to 3.7 g/dL). Of the dogs that met these criteria, only 20% were given a false positive label by this cancer screening test. (C) 2007 Optical Society of America.
- Cell-free protein synthesis of norovirus virus-like particlesSheng, Jiayuan; Lei, Shaohua; Yuan, Lijuan; Feng, Xueyang (Royal Society of Chemistry, 2017-05-25)Norovirus vaccine development largely depends on recombinant virus-like-particles (VLPs). Norovirus VLPs have been produced in several cell-based expression systems with long production times. Here we report, for the first time, that norovirus VLPs can be expressed and assembled by using a cell-free protein expression system within four hours.
- A central role for the transcriptional regulator VtlR in small RNA-mediated gene regulation in Agrobacterium tumefaciensBudnick, James A.; Sheehan, Lauren M.; Ginder, Miranda. J.; Failor, Kevin C.; Perkowski, Julia. M.; Pinto, John. F.; Kohl, Kirsten A.; Kang, Lin; Michalak, Pawel; Luo, Li; Heindl, Jason E.; Caswell, Clayton C. (2020-09-11)LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.
- Characterizing the transport and utilization of the neurotransmitter GABA in the bacterial pathogen Brucella abortusBudnick, James A.; Sheehan, Lauren M.; Benton, Angela H.; Pitzer, Joshua E.; Kang, Lin; Michalak, Pawel; Roop, R. Martin II; Caswell, Clayton C. (PLoS, 2020-08-26)The neurotransmitter gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the human brain; however, it is becoming more evident that this non-proteinogenic amino acid plays multiple physiological roles in biology. In the present study, the transport and function of GABA is studied in the highly infectious intracellular bacterium Brucella abortus. The data show that 3H-GABA is imported by B. abortus under nutrient limiting conditions and that the small RNAs AbcR1 and AbcR2 negatively regulate this transport. A specific transport system, gts, is responsible for the transport of GABA as determined by measuring 3H-GABA transport in isogenic deletion strains of known AbcR1/2 regulatory targets; however, this locus is unnecessary for Brucella infection in BALB/c mice. Similar assays revealed that 3H-GABA transport is uninhibited by the 20 standard proteinogenic amino acids, representing preference for the transport of 3H-GABA. Metabolic studies did not show any potential metabolic utilization of GABA by B. abortus as a carbon or nitrogen source, and RNA sequencing analysis revealed limited transcriptional differences between B. abortus 2308 with or without exposure to GABA. While this study provides evidence for GABA transport by B. abortus, questions remain as to why and when this transport is utilized during Brucella pathogenesis.
- Chikungunya virus superinfection exclusion is mediated by a block in viral replication and does not rely on non-structural protein 2Boussier, Jeremy; Levi, Laura I.; Weger-Lucarelli, James; Poirier, Enzo Z.; Vignuzzi, Marco; Albert, Matthew L. (2020-11-12)Superinfection exclusion (SIE) is a process by which a virally infected cell is protected from subsequent infection by the same or a closely related virus. By preventing cell coinfection, SIE favors preservation of genome integrity of a viral strain and limits its recombination potential with other viral genomes, thereby impacting viral evolution. Although described in virtually all viral families, the precise step(s) impacted by SIE during the viral life cycle have not been systematically explored. Here, we describe for the first time SIE triggered by chikungunya virus (CHIKV), an alphavirus of public health importance. Using single-cell technologies, we demonstrate that CHIKV excludes subsequent infection with: CHIKV; Sindbis virus, a related alphavirus; and influenza A, an unrelated RNA virus. We further demonstrate that SIE does not depend on the action of type I interferon, nor does it rely on host cell transcription. Moreover, exclusion is not mediated by the action of a single CHIKV protein; in particular, we observed no role for non-structural protein 2 (nsP2), making CHIKV unique among characterized alphaviruses. By stepping through the viral life cycle, we show that CHIKV exclusion occurs at the level of replication, but does not directly influence virus binding, nor viral structural protein translation. In sum, we characterized co-infection during CHIKV replication, which likely influences the rate of viral diversification and evolution.
- Clinical outcomes in dogs with localized splenic histiocytic sarcoma treated with splenectomy with or without adjuvant chemotherapyLatifi, Max; Tuohy, Joanne L.; Coutermarsh-Ott, Sheryl; Klahn, Shawna L.; Leeper, Haley; Dervisis, Nikolaos G. (Wiley, 2020-09-28)Background: Localized splenic histiocytic sarcoma (HS) in dogs is a poorly understood disease, and could have longer survival times than disseminated or hemophagocytic HS. Understanding the clinical behavior of localized splenic HS can refine treatment recommendations. Objective: To describe the clinical characteristics and outcomes of dogs with localized splenic HS. Animals: Fourteen client-owned dogs with histologically confirmed splenic HS that received splenectomy. Methods: Multi-institutional retrospective case series—medical records of dogs with splenic HS were reviewed. Dog signalment, clinicopathologic data, primary and adjuvant treatments, and outcomes were obtained. Survival data were calculated using Kaplan-Meier analysis. Dog variables such as age, weight, platelet counts were reported using descriptive statistics. The Cox proportional hazards regression method was used to determine whether potential risk factors (weight, age, albumin level, hematocrit, and platelet count) were associated with PFI. Results: Median survival time for the dogs in this study was 427 days. Twelve dogs received adjuvant lomustine-based chemotherapy. Five dogs (35.7%) were suspected or confirmed to have developed metastatic disease. Eleven dogs died of disease, 1 dog died of unrelated cause, and 2 dogs were alive at final follow-up. Conclusions and Clinical Significance: Histiocytic sarcoma in dogs can manifest as a localized form in the spleen. Dogs with localized splenic HS treated with surgery ± chemotherapy can experience survival times over a year.
- Common differentially expressed genes and pathways correlating both coronary artery disease and atrial fibrillationZheng, Youjing; He, Jia-Qiang (2021-05-03)Coronary artery disease (CAD) and atrial fibrillation (AF) share common risk factors, such as hypertension and diabetes. The patients with CAD often suffer concomitantly AF, but how two diseases interact with each other at cellular and molecular levels remain largely unknown. The present study aims to dissect the common differentially expressed genes (DEGs) that are concurrently associated with CAD and AF. Two datasets [GSE71226 for CAD) and GSE31821 for AF] were analyzed with GEO2R and Venn Diagram to identify the DEGs. Signaling pathways, gene enrichments, and protein-protein interactions (PPI) of the identified common DEGs were further analyzed with Kyoto Encyclopedia of Gene and Genome (KEGG), Database for Annotation, Visualization and Integrated Discovery (DAVID), and Search Toll for the Retrieval of Interacting Genes (STRING). 565 up- and 1367 down-regulated genes in GSE71226 and 293 up- and 68 down-regulated genes in GSE31821 were identified. Among those, 21 common DEGs were discovered from both datasets, which lead to the findings of 4 CAD and 21 AF pathways, 3 significant gene enrichments (intracellular cytoplasm, protein binding, and vascular labyrinthine layer), and 3 key proteins (membrane metallo-endopeptidase (MME), transferrin receptor 1 (TfR1), and Lyso-some-associated membrane glycoprotein 1 (LAMP1)). Together, these data implied that these three proteins may play a central role in development of both CAD and AF.
- Complexity, fractals, disease time, and cancerSpillman, William B. Jr.; Robertson, John L.; Huckle, William R.; Govindan, B. S.; Meissner, Kenith E. (American Physical Society, 2004-12)Despite many years of research, a method to precisely and quantitatively determine cancer disease state remains elusive. Current practice for characterizing solid tumors involves the use of varying systems of tumor grading and staging and thus leaves diagnosis and clinical staging dependent on the experience and skill of the physicians involved. Although numerous disease markers have been identified, no combination of them has yet been found that produces a quantifiable and reliable measure of disease state. Newly developed genomic markers and other measures based on the developing sciences of complexity offer promise that this situation may soon be changed for the better. In this paper, we examine the potential of two measures of complexity, fractal dimension and percolation, for use as components of a yet to be determined "disease time" vector that more accurately quantifies disease state. The measures are applied to a set of micrographs of progressive rat hepatoma and analyzed in terms of their correlation with cell differentiation, ratio of tumor weight to rat body weight and tumor growth time. The results provide some support for the idea that measures of complexity could be important elements of any future cancer "disease time" vector.
- Congenital infection of mice with toxoplasma gondii induces minimal change in behavior and no change in neurotransmitter concentrationsGoodwin, David G.; Hrubec, Terry C.; Klein, Bradley G.; Strobl, Jeannine S.; Werre, Stephen R.; Han, Qian; Zajac, Anne M.; Lindsay, David S. (American Society of Parasitology, 2012-08-01)We examined the effect of maternal Toxoplasma gondii infection on behavior and the neurotransmitter concentrations of congenitally infected CD-I mice at 4 and 8 wk of age when latent tissue cysts would be present in their brains. Because of sex-associated behavioral changes that develop during aging, infected female mice were compared with control females and infected male mice were compared with control males. Only the short memory behavior (distance between goal box and first hole investigated) of male mice congenitally infected with T. gondii was significantly different (P < 0.05) from that of uninfected control males at both 4 and 8 wk by using the Barnes maze test. The other parameters examined in the latter test, i.e., functional observational battery tests, virtual cliff, visual placement, and activity tests, were not significantly different (P > 0.05) at 4 and 8 wk. Concentrations of neurotransmitters and their metabolites (dopamine; 3,4-dihydroxyphenylacetic acid; homovanillic acid; norepinephrine; epinephrine; 3-methoxy-4-hydroxyphenylglycol; serotonin; and 5-hydroxyindoleacetic acid) in the frontal cortex and striatum were not different (P > 0.05) between infected and control mice at 8 wk of age. The exact mechanism for the observed effect on short-term memory in male mice is not known, and further investigation may help elucidate the molecular mechanisms associated with the proposed link between behavioral changes and T gondil infection in animals. We were not able, however, to confirm the widely held belief that changes in neurotransmitters result from chronic T. gondii infection of the brain.