College of Science (COS)
Permanent URI for this community
Browse
Browsing College of Science (COS) by Department "Agricultural and Applied Economics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cloud-Sourcing: Using an Online Labor Force to Detect Clouds and Cloud Shadows in Landsat ImagesYu, Ling; Ball, Sheryl B.; Blinn, Christine E.; Moeltner, Klaus; Peery, Seth; Thomas, Valerie A.; Wynne, Randolph H. (MDPI, 2015-02-26)We recruit an online labor force through Amazon.com’s Mechanical Turk platform to identify clouds and cloud shadows in Landsat satellite images. We find that a large group of workers can be mobilized quickly and relatively inexpensively. Our results indicate that workers’ accuracy is insensitive to wage, but deteriorates with the complexity of images and with time-on-task. In most instances, human interpretation of cloud impacted area using a majority rule was more accurate than an automated algorithm (Fmask) commonly used to identify clouds and cloud shadows. However, cirrus-impacted pixels were better identified by Fmask than by human interpreters. Crowd-sourced interpretation of cloud impacted pixels appears to be a promising means by which to augment or potentially validate fully automated algorithms.
- From concept to practice to policy: modeling coupled natural and human systems in lake catchmentsCobourn, Kelly M.; Carey, Cayelan C.; Boyle, Kevin J.; Duffy, Christopher J.; Dugan, Hilary A.; Farrell, Kaitlin J.; Fitchett, Leah Lynn; Hanson, Paul C.; Hart, Julia A.; Henson, Virginia Reilly; Hetherington, Amy L.; Kemanian, Armen R.; Rudstam, Lars G.; Shu, Lele; Soranno, Patricia A.; Sorice, Michael G.; Stachelek, Joseph; Ward, Nicole K.; Weathers, Kathleen C.; Weng, Weizhe; Zhang, Yu (Ecological Society of America, 2018-05-03)Recent debate over the scope of the U.S. Clean Water Act underscores the need to develop a robust body of scientific work that defines the connectivity between freshwater systems and people. Coupled natural and human systems (CNHS) modeling is one tool that can be used to study the complex, reciprocal linkages between human actions and ecosystem processes. Well‐developed CNHS models exist at a conceptual level, but the mapping of these system representations in practice is limited in capturing these feedbacks. This article presents a paired conceptual–empirical methodology for functionally capturing feedbacks between human and natural systems in freshwater lake catchments, from human actions to the ecosystem and from the ecosystem back to human actions. We address extant challenges in CNHS modeling, which arise from differences in disciplinary approach, model structure, and spatiotemporal resolution, to connect a suite of models. In doing so, we create an integrated, multi‐disciplinary tool that captures diverse processes that operate at multiple scales, including land‐management decision‐making, hydrologic‐solute transport, aquatic nutrient cycling, and civic engagement. In this article, we build on this novel framework to advance cross‐disciplinary dialogue to move CNHS lake‐catchment modeling in a systematic direction and, ultimately, provide a foundation for smart decision‐making and policy.