Scholarly Works, Institute for Critical Technology and Applied Science (ICTAS)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Institute for Critical Technology and Applied Science (ICTAS) by Department "Computer Science"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventionsKidane, Yared H.; Lawrence, Christopher B.; Murali, T. M. (2013-10-07)Background Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. Results In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc
- Experimental testing of a new integrated model of the budding yeast Start transitionAdames, Neil R.; Schuck, P. Logan; Chen, Katherine C.; Murali, T. M.; Tyson, John J.; Peccoud, Jean (American Society for Cell Biology, 2015-11-05)The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1–S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanisms. These results led us to reevaluate and expand a previous mathematical model of the yeast cell cycle. The new model incorporates Whi3 inhibition of Cln3 activity, Whi5 inhibition of SBF and MBF transcription factors, and feedback inhibition of Whi5 by G1–S cyclins. We tested the accuracy of the model by simulating various mutants not described in the literature. We then constructed these novel mutant strains and compared their observed phenotypes to the model’s simulations. The experimental results reported here led to further changes of the model, which will be fully described in a later article. Our study demonstrates the advantages of combining model design, simulation, and testing in a coordinated effort to better understand a complex biological network.
- Network-based functional enrichmentPoirel, Christopher L.; Owens, Clifford C. III; Murali, T. M. (2011-11-30)Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i) determine which functions are enriched in a given network, ii) given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii) given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are implemented in C++ and are freely available under the GNU General Public License at our supplementary website. Additionally, all our input data and results are available at http://bioinformatics.cs.vt.edu/~murali/supplements/2011-incob-nbe/.
- Sensitive Detection of Pathway Perturbations in CancersRivera, Corban G.; Tyler, Brett M.; Murali, T. M. (2012-03-21)Background The normal functioning of a living cell is characterized by complex interaction networks involving many different types of molecules. Associations detected between diseases and perturbations in well-defined pathways within such interaction networks have the potential to illuminate the molecular mechanisms underlying disease progression and response to treatment. Results In this paper, we present a computational method that compares expression profiles of genes in cancer samples to samples from normal tissues in order to detect perturbations of pre-defined pathways in the cancer. In contrast to many previous methods, our scoring function approach explicitly takes into account the interactions between the gene products in a pathway. Moreover, we compute the sub-pathway that has the highest score, as opposed to merely computing the score for the entire pathway. We use a permutation test to assess the statistical significance of the most perturbed sub-pathway. We apply our method to 20 pathways in the Netpath database and to the Global Cancer Map of gene expression in 18 cancers. We demonstrate that our method yields more sensitive results than alternatives that do not consider interactions or measure the perturbation of a pathway as a whole. We perform a sensitivity analysis to show that our approach is robust to modest changes in the input data. Our method confirms numerous well-known connections between pathways and cancers. Conclusions Our results indicate that integrating differential gene expression with the interaction structure in a pathway is a powerful approach for detecting links between a cancer and the pathways perturbed in it. Our results also suggest that even well-studied pathways may be perturbed only partially in any given cancer. Further analysis of cancer-specific sub-pathways may shed new light on the similarities and differences between cancers.
- Summarizing cellular responses as biological process networksLasher, Christopher D.; Rajagopalan, Padmavathy; Murali, T. M. (2013-07-29)Background Microarray experiments can simultaneously identify thousands of genes that show significant perturbation in expression between two experimental conditions. Response networks, computed through the integration of gene interaction networks with expression perturbation data, may themselves contain tens of thousands of interactions. Gene set enrichment has become standard for summarizing the results of these analyses in terms functionally coherent collections of genes such as biological processes. However, even these methods can yield hundreds of enriched functions that may overlap considerably. Results We describe a new technique called Markov chain Monte Carlo Biological Process Networks (MCMC-BPN) capable of reporting a highly non-redundant set of links between processes that describe the molecular interactions that are perturbed under a specific biological context. Each link in the BPN represents the perturbed interactions that serve as the interfaces between the two processes connected by the link. We apply MCMC-BPN to publicly available liver-related datasets to demonstrate that the networks formed by the most probable inter-process links reported by MCMC-BPN show high relevance to each biological condition. We show that MCMC-BPN’s ability to discern the few key links from in a very large solution space by comparing results from two other methods for detecting inter-process links. Conclusions MCMC-BPN is successful in using few inter-process links to explain as many of the perturbed gene-gene interactions as possible. Thereby, BPNs summarize the important biological trends within a response network by reporting a digestible number of inter-process links that can be explored in greater detail.
- Transcriptomic Analysis of Hepatic Cells in Multicellular Organotypic Liver ModelsTegge, Allison N.; Rodrigues, Richard R.; Larkin, Adam L.; Vu, Lucas T.; Murali, T. M.; Rajagopalan, Padmavathy (Springer Nature, 2018-07-27)Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPAR alpha) is transcribed in LSECs. The expression of downstream processes corroborates active PPAR alpha signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPAR alpha and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.
- XTALKDB: a database of signaling pathway crosstalkSam, Sarah A.; Teel, Joelle; Tegge, Allison N.; Bharadwaj, Aditya; Murali, T. M. (2017-01-04)Analysis of signaling pathways and their crosstalk is a cornerstone of systems biology. Thousands of papers have been published on these topics. Surprisingly, there is no database that carefully and explicitly documents crosstalk between specific pairs of signaling pathways. We have developed XTALKDB (http://www.xtalkdb.org) to fill this very important gap. XTALKDB contains curated information for 650 pairs of pathways from over 1600 publications. In addition, the database reports the molecular components (e.g. proteins, hormones, microRNAs) that mediate crosstalk between a pair of pathways and the species and tissue in which the crosstalk was observed. The XTALKDB website provides an easy-to- use interface for scientists to browse crosstalk information by querying one or more pathways or molecules of interest.