Scholarly Works, Virginia-Maryland College of Veterinary Medicine
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Virginia-Maryland College of Veterinary Medicine by Department "Virginia-Maryland College of Veterinary Medicine"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Antibiotics ameliorate lupus-like symptoms in miceMu, Qinghui; Tavella, Vincent J.; Kirby, Jay L.; Cecere, Thomas E.; Chung, Matthias; Lee, Jiyoung; Li, Song; Ahmed, Sattar Ansar; Eden, Kristin; Allen, Irving C. (Nature, 2017-10-20)Gut microbiota and the immune system interact to maintain tissue homeostasis, but whether this interaction is involved in the pathogenesis of systemic lupus erythematosus (SLE) is unclear. Here we report that oral antibiotics given during active disease removed harmful bacteria from the gut microbiota and attenuated SLE-like disease in lupus-prone mice. Using MRL/lpr mice, we showed that antibiotics given after disease onset ameliorated systemic autoimmunity and kidney histopathology. They decreased IL-17-producing cells and increased the level of circulating IL-10. In addition, antibiotics removed Lachnospiraceae and increased the relative abundance of Lactobacillus spp., two groups of bacteria previously shown to be associated with deteriorated or improved symptoms in MRL/lpr mice, respectively. Moreover, we showed that the attenuated disease phenotype could be recapitulated with a single antibiotic vancomycin, which reshaped the gut microbiota and changed microbial functional pathways in a time-dependent manner. Furthermore, vancomycin treatment increased the barrier function of the intestinal epithelium, thus preventing the translocation of lipopolysaccharide, a cell wall component of Gram-negative Proteobacteria and known inducer of lupus in mice, into the circulation. These results suggest that mixed antibiotics or a single antibiotic vancomycin ameliorate SLE-like disease in MRL/lpr mice by changing the composition of gut microbiota.
- Bursts of Bipolar Microsecond Pulses Inhibit Tumor GrowthSano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn Rose; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Cchristopher S.; Saur, Dieter; Cissell, James M.; Robertson, John L.; Lee, Yong Woo; Davalos, Rafael V. (Nature Publishing Group, 2015-10-13)Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.
- In Situ Real-Time Chemiluminescence Imaging of Reactive Oxygen Species Formation from CardiomyocytesLi, Yunbo; Shen, Haiou; Zhu, Hong; Trush, Michael A.; Jiang, Ming; Wang, Ge (Hindawi, 2009-02-25)We have applied the highly sensitive chemiluminescence (CL) imagingtechnique to investigate the in situ ROS formation in cultured monolayers of rat H9c2 cardiomyocytes. Photon emission was detected via an innovative imaging system after incubation of H9c2 cells in culture with luminol and horseradish peroxidase (HRP), suggesting constitutive formation of ROS by the cardiomyocytes. Addition of benzo(a)pyrene-1,6-quinone(BPQ) to cultured H9c2 cells resulted in a 4-5-fold increase in the formation of ROS, as detected by the CL imaging. Both constitutive and BPQ-stimulated CL responses in cultured H9c2 cells were sustained for up to 1 hour. The CL responses were completely abolished in the presence of superoxide dismutase and catalase, suggesting the primary involvement of superoxide and hydrogen peroxide (). In contrast to BPQ-mediated redox cycling, blockage of mitochondrial electron transport chain by either antimycin A or rotenone exerted marginal effects on the ROS formation by cultured H9c2 cells. Upregulation of cellular antioxidants fordetoxifying both superoxide and by 3-1,2-dithiole-3-thione resulted in marked inhibition of both constitutive and BPQ-augmented ROS formation in cultured H9c2 cells. Taken together, we demonstrate the sensitive detection of ROS by CL imaging in cultured cardiomyocytes.
- In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition mattersHu, Yun; Ehrich, Marion F.; Fuhrman, Kristel; Zhang, Chenming (Springer, 2014-08-27)Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.
- Molecular targets for rapid identification of BrucellasppRatushna, Vladyslava G.; Sturgill, David M.; Ramamoorthy, Sheela; Reichow, Sherry A.; He, Yongqun; Lathigra, Raju; Sriranganathan, Nammalwar; Halling, Shirley M.; Boyle, Stephen M.; Gibas, Cynthia J. (2006-02-22)Background Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. Results We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. Conclusion Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.
- Regulation of Cytoskeleton Organization by Sphingosine in a Mouse Cell Model of Progressive Ovarian CancerCreekmore, Amy L.; Heffron, C. Lynn; Brayfield, Bradley P.; Roberts, Paul C.; Schmelz, Eva M. (MDPI, 2013-07-16)Ovarian cancer is a multigenic disease and molecular events driving ovarian cancer progression are not well established. We have previously reported the dysregulation of the cytoskeleton during ovarian cancer progression in a syngeneic mouse cell model for progressive ovarian cancer. In the present studies, we investigated if the cytoskeleton organization is a potential target for chemopreventive treatment with the bioactive sphingolipid metabolite sphingosine. Long-term treatment with non-toxic concentrations of sphingosine but not other sphingolipid metabolites led to a partial reversal of a cytoskeleton architecture commonly associated with aggressive cancer phenotypes towards an organization reminiscent of non-malignant cell phenotypes. This was evident by increased F-actin polymerization and organization, a reduced focal adhesion kinase expression, increased a-actinin and vinculin levels which together led to the assembly of more mature focal adhesions. Downstream focal adhesion signaling, the suppression of myosin light chain kinase expression and hypophosphorylation of its targets were observed after treatment with sphingosine. These results suggest that sphingosine modulate the assembly of actin stress fibers via regulation of focal adhesions and myosin light chain kinase. The impact of these events on suppression of ovarian cancer by exogenous sphingosine and their potential as molecular markers for treatment efficacy warrants further investigation.