Scholarly Works, Fralin Life Sciences Institute
Permanent URI for this collection
Browse
Browsing Scholarly Works, Fralin Life Sciences Institute by Department "Civil and Environmental Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Probiotics and virulent human rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigsZhang, Husen; Wang, Haifeng; Shepherd, Megan L.; Wen, Ke; Li, Guohua; Yang, Xingdong; Kocher, Jacob; Giri-Rachman, Ernawati; Dickerman, Allan W.; Settlage, Robert E.; Yuan, Lijuan (2014-09-09)We generated a neonatal pig model with human infant gut microbiota (HGM) to study the effect of a probiotic on the composition of the transplanted microbiota following rotavirus vaccination and challenge. All the HGM-transplanted pigs received two doses of an oral attenuated rotavirus vaccine. The gut microbiota of vaccinated pigs were investigated for effects of Lactobacillus rhamnosus GG (LGG) supplement and homotypic virulent human rotavirus (HRV) challenge. High-throughput sequencing of V4 region of 16S rRNA genes demonstrated that HGM-transplanted pigs carried microbiota similar to that of the C-section delivered baby. Firmicutes and Proteobacteria represented over 98% of total bacteria in the human donor and the recipient pigs. HRV challenge caused a phylum-level shift from Firmicutes to Proteobacteria. LGG supplement prevented the changes in microbial communities caused by HRV challenge. In particular, members of Enterococcus in LGG-supplemented pigs were kept at the baseline level, while they were enriched in HRV challenged pigs. Taken together, our results suggested that HGM pigs are valuable for testing the microbiota’s response to probiotic interventions for treating infantile HRV infection.
- Single-Cell Analysis Reveals that Chronic Silver Nanoparticle Exposure Induces Cell Division Defects in Human Epithelial CellsGarcia, Ellen B.; Alms, Cynthia; Hinman, Albert W.; Kelly, Conor; Smith, Adam; Vance, Marina; Loncarek, Jadranka; Marr, Linsey C.; Cimini, Daniela (MDPI, 2019-06-11)Multiple organizations have urged a paradigm shift from traditional, whole animal, chemical safety testing to alternative methods. Although these forward-looking methods exist for risk assessment and predication, animal testing is still the preferred method and will remain so until more robust cellular and computational methods are established. To meet this need, we aimed to develop a new, cell division-focused approach based on the idea that defective cell division may be a better predictor of risk than traditional measurements. To develop such an approach, we investigated the toxicity of silver nanoparticles (AgNPs) on human epithelial cells. AgNPs are the type of nanoparticle most widely employed in consumer and medical products, yet toxicity reports are still confounding. Cells were exposed to a range of AgNP doses for both short- and-long term exposure times. The analysis of treated cell populations identified an effect on cell division and the emergence of abnormal nuclear morphologies, including micronuclei and binucleated cells. Overall, our results indicate that AgNPs impair cell division, not only further confirming toxicity to human cells, but also highlighting the propagation of adverse phenotypes within the cell population. Furthermore, this work illustrates that cell division-based analysis will be an important addition to future toxicology studies.