Fralin Life Sciences Institute
Permanent URI for this community
Note: In 2019, the Biocomplexity Institute became part of the Fralin Life Sciences Institute.
Browse
Browsing Fralin Life Sciences Institute by Department "Center for Emerging, Zoonotic, and Arthropod-borne Pathogens"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- High-throughput screening identifies a novel natural product-inspired scaffold capable of inhibiting Clostridioides difficile in vitroPal, Rusha; Dai, Mingji; Seleem, Mohamed N. (Nature Research, 2021-05-25)Clostridioides difficile is an enteric pathogen responsible for causing debilitating diarrhea, mostly in hospitalized patients. The bacterium exploits on microbial dysbiosis induced by the use of antibiotics to establish infection that ranges from mild watery diarrhea to pseudomembranous colitis. The increased prevalence of the disease accompanied by exacerbated comorbidity and the paucity of anticlostridial drugs that can tackle recurrence entails novel therapeutic options. Here, we report new lead molecules with potent anticlostridial activity from the AnalytiCon NATx library featuring natural product-inspired or natural product-derived small molecules. A high-throughput whole-cell-based screening of 5000 synthetic compounds from the AnalytiCon NATx library helped us identify 10 compounds capable of inhibiting the pathogen. Out of these 10 hits, we found 3 compounds with potent activity against C. difficile (MIC = 0.5–2 μg/ml). Interestingly, these compounds had minimal to no effect on the indigenous intestinal microbial species tested, unlike the standard-of-care antibiotics vancomycin and fidaxomicin. Further in vitro investigation revealed that the compounds were nontoxic to Caco-2 cell line. Given their potent anticlostridial activity, natural product-inspired scaffolds may suggest potential avenues that can address the unmet needs in preventing C. difficile mediated disease.
- La Crosse Virus Shows Strain-Specific Differences in PathogenesisWilson, Sarah N.; López, Krisangel; Coutermarsh-Ott, Sheryl; Auguste, Dawn I.; Porier, Danielle L.; Armstrong, Philip M.; Andreadis, Theodore G.; Eastwood, Gillian; Auguste, A. Jonathan (MDPI, 2021-03-29)La Crosse virus (LACV) is the leading cause of pediatric viral encephalitis in North America, and is an important public health pathogen. Historically, studies involving LACV pathogenesis have focused on lineage I strains, but no former work has explored the pathogenesis between or within lineages. Given the absence of LACV disease in endemic regions where a robust entomological risk exists, we hypothesize that some LACV strains are attenuated and demonstrate reduced neuroinvasiveness. Herein, we compared four viral strains representing all three lineages to determine differences in neurovirulence or neuroinvasiveness using three murine models. A representative strain from lineage I was shown to be the most lethal, causing >50% mortality in each of the three mouse studies. However, other strains only presented excessive mortality (>50%) within the suckling mouse neurovirulence model. Neurovirulence was comparable among strains, but viruses differed in their neuroinvasive capacities. Our studies also showed that viruses within lineage III vary in pathogenesis with contemporaneous strains, showing reduced neuroinvasiveness compared to an ancestral strain from the same U.S. state (i.e., Connecticut). These findings demonstrate that LACV strains differ markedly in pathogenesis, and that strain selection is important for assessing vaccine and therapeutic efficacies.
- Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal modelsAdam, Awadalkareem; Luo, Huanle; Osman, Samantha R.; Wang, Binbin; Roundy, Christopher M.; Auguste, A. Jonathan; Plante, Kenneth S.; Peng, Bi-Hung; Thangamani, Saravanan; Frolova, Elena I.; Frolov, Ilya; Weaver, Scott C.; Wang, Tian (2021-01-01)A chimeric Eilat/ Chikungunya virus (EILV/CHIKV) was previously reported to replicate only in mosquito cells but capable of inducing robust adaptive immunity in animals. Here, we initially selected C7/10 cells to optimize the production of the chimeric virus. A two-step procedure produced highly purified virus stocks, which was shown to not cause hypersensitive reactions in a mouse sensitization study. We further optimized the dose and characterized the kinetics of EILV/CHIKV-induced immunity. A single dose of 10(8) PFU was sufficient for induction of high levels of CHIKV-specific IgM and IgG antibodies, memory B cell and CD8(+) T cell responses. Compared to the live-attenuated CHIKV vaccine 181/25, EILV/CHIKV induced similar levels of CHIKV-specific memory B cells, but higher CD8(+) T cell responses at day 28. It also induced stronger CD8(+), but lower CD4(+) T cell responses than another live-attenuated CHIKV strain (CHIKV/IRES) at day 55 post-vaccination. Lastly, the purified EILV/CHIKV triggered antiviral cytokine responses and activation of antigen presenting cell (APC)s in vivo, but did not induce APCs alone upon in vitro exposure. Overall, our results demonstrate that the EILV/CHIKV vaccine candidate is safe, inexpensive to produce and a potent inducer of both innate and adaptive immunity in mice.
- The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent MannerCallahan, Victoria; Hawks, Seth A.; Crawford, Matthew A.; Lehman, Caitlin W.; Morrison, Holly A.; Ivester, Hannah M.; Akhrymuk, Ivan V.; Boghdeh, Niloufar; Flor, Rafaela; Finkielstein, Carla V.; Allen, Irving C.; Weger-Lucarelli, James; Duggal, Nisha K.; Hughes, Molly A.; Kehn-Hall, Kylene (MDPI, 2021-06-03)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a ‘cytokine storm.’ In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.
- Simvastatin Reduces Protection and Intestinal T Cell Responses Induced by a Norovirus P Particle Vaccine in Gnotobiotic PigsKocher, Jacob; Castellucci, Tammy Bui; Wen, Ke; Li, Guohua; Yang, Xingdong; Lei, Shaohua; Jiang, Xi; Yuan, Lijuan (MDPI, 2021-07-01)Noroviruses (NoVs) are a leading cause of acute gastroenteritis worldwide. P particles are a potential vaccine candidate against NoV. Simvastatin is a cholesterol-reducing drug that is known to increase NoV infectivity. In this study, we examined simvastatin’s effects on P particle-induced protective efficacy and T-cell immunogenicity using the gnotobiotic pig model of human NoV infection and diarrhea. Pigs were intranasally inoculated with three doses (100 µg/dose) of GII.4/VA387-derived P particles together with monophosphoryl lipid A and chitosan adjuvants. Simvastatin-fed pigs received 8 mg/day orally for 11 days prior to challenge. A subset of pigs was orally challenged with 10 ID50 of a NoV GII.4/2006b variant at post-inoculation day (PID) 28 and monitored for 7 days post-challenge. Intestinal and systemic T cell responses were determined pre- and postchallenge. Simvastatin abolished the P particle’s protection and significantly increased diarrhea severity after NoV infection. Simvastatin decreased proliferation of virus-specific and non-specific CD8 T cells in duodenum and virus-specific CD4 and CD8 T cells in spleen and significantly reduced numbers of intestinal mononuclear cells in vaccinated pigs. Furthermore, simvastatin significantly decreased numbers of duodenal CD4+IFN-γ+, CD8+IFN-γ+ and regulatory T cells and total duodenal activated CD4+ and CD8+ T cells in vaccinated pigs pre-challenge at PID 28. Following challenge, simvastatin prevented the IFN-γ+ T cell response in spleen of vaccinated pigs. These results indicate that simvastatin abolished P particle vaccine-induced partial protection through, at least in part, impairing T cell immunity. The findings have specific implications for the development of preventive and therapeutic strategies against NoV gastroenteritis, especially for the elderly population who takes statin-type drugs.
- Structural and molecular biology of hepatitis E virusWang, Bo; Meng, Xiang-Jin (Elsevier, 2021-01-01)Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis, mainly transmitted by fecal-oral route but has also been linked to fulminant hepatic failure, chronic hepatitis, and extrahepatic neurological and renal diseases. HEV is an emerging zoonotic pathogen with a broad host range, and strains of HEV from numerous animal species are known to cross species barriers and infect humans. HEV is a single-stranded, positive-sense RNA virus in the family Hepeviridae. The genome typically contains three open reading frames (ORFs): ORF1 encodes a nonstructural polyprotein for virus replication and transcription, ORF2 encodes the capsid protein that elicits neutralizing antibodies, and ORF3, which partially overlaps ORF2, encodes a multifunctional protein involved in virion morphogenesis and pathogenesis. HEV virions are non-enveloped spherical particles in feces but exist as quasi-enveloped particles in circulating blood. Two types of HEV virus-like particles (VLPs), small T = 1 (270 Å) and native virion-sized T = 3 (320–340 Å) have been reported. There exist two distinct forms of capsid protein, the secreted form (ORF2S) inhibits antibody neutralization, whereas the capsid-associated form (ORF2C) self-assembles to VLPs. Four cis-reactive elements (CREs) containing stem-loops from secondary RNA structures have been identified in the non-coding regions and are critical for virus replication. This mini-review discusses the current knowledge and gaps regarding the structural and molecular biology of HEV with emphasis on the virion structure, genomic organization, secondary RNA structures, viral proteins and their functions, and life cycle of HEV.