Scholarly Works, Food Science and Technology
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Food Science and Technology by Department "Entomology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Chemical Compositions of Edamame Genotypes Grown in Different Locations in the USYu, Dajun; Lin, Tiantian; Sutton, Kemper L.; Lord, Nick; Carneiro, Renata C. V.; Jin, Qing; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Ross, W. Jeremy; Duncan, Susan E.; Yin, Yun; Wang, Hengjian; Huang, Haibo (2021-02-12)The consumption of edamame [Glycine max (L.) Merr.] in the US has rapidly increased due to its nutritional value and potential health benefits. In this study, 10 edamame genotypes were planted in duplicates in three different locations in the US-Whitethorne, Virginia (VA), Little Rock, Arkansas (AR), and Painter, VA. Edamame samples were harvested at the R6 stage of the bean development when beans filled 80-90% of the pod cavity. Afterward, comprehensive chemical composition analysis, including sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were conducted on powdered samples using standard methods and the total sweetness was calculated based on the measured sugars and alanine contents. Significant effects of the location were observed on all chemical constituents of edamame (p < 0.05). The average performance of the genotypes was higher in Whitethorne for the contents of free sucrose (59.29 mg/g), fructose (11.42 mg/g), glucose (5.38 mg/g), raffinose (5.32 mg/g), stachyose (2.34 mg/g), total sweetness (78.63 mg/g), and starch (15.14%) when compared to Little Rock and Painter. The highest soluble alanine (2.67 mg/g), NDF (9.00%), ash (5.60%), and moisture (70.36%) contents were found on edamame planted in Little Rock while edamame planted in Painter had the highest crude protein (43.11%) and oil (20.33%) contents. Significant effects of genotype were observed on most of the chemical constituents (p < 0.05) except NDF and raffinose. Among the 10 genotypes, R13-5029 consistently had high sucrose content and total sweetness across the three locations, meanwhile it had relatively high protein and fiber contents. Overall, the results indicate that to breed better edamame genotypes in the US, both genotype and planting location should be taken into considerations.
- Utilizing Consumer Perception of Edamame to Guide New Variety DevelopmentCarneiro, Renata C. V.; Duncan, Susan E.; O'Keefe, Sean F.; Yu, Dajun; Huang, Haibo; Yin, Yun; Neill, Clinton L.; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Reiter, Mark S.; Ross, W. Jeremy; Chen, Pengyin; Gillen, Anne (2021-01-18)Consumption of edamame (vegetable soybeans) has increased significantly in the U.S. over the last 20 years. Although market demand has been increasing, most edamame is still imported from Asian countries. A team of multistate plant-breeding programs in the mid-Atlantic and Southeast U.S. has focused on developing new breeding lines that grow well in the U.S. and deliver what domestic growers, processors and consumers need and expect from their edamame. In our study, sensory evaluation was used to identify edamame genotypes and sensory attributes preferred by consumers to support breeding selection criteria. In the first year (reported as our "screening study"), 20 edamame genotypes were grown in three locations: Newport, AR, and Blacksburg and Painter, VA. In the second year (reported as our "validation study"), 10 edamame genotypes selected after our screening study were grown in Blacksburg and Painter, VA, Portageville, MO, and Stoneville, MS. In both years of research, untrained participants (adults; vegetable consumers not allergic to soy; N >= 50) used a traditional 9-point acceptability (hedonic) scale (1 = "dislike extremely"; 9 = "like extremely") to evaluate overall-liking, aroma, appearance, taste, and texture, and a 5-point scale (1 = "not sweet," 5 = "extremely sweet") to evaluate sweetness intensity. Next, participants used a check-all-that-apply (CATA) list of selected sensory terms to describe the sensory characteristics of each edamame sample. Overall acceptability of edamame genotypes was significantly different among all genotypes (p < 0.05). Samples described as "bitter," "sour" (flavor) or "starchy" (texture) were associated with lower acceptability scores while "salty" and "sweet" (flavor) were correlated with higher acceptability. Sensory data from the screening study were used to select the best genotypes by use of a defined decision process based on the consumer data. The validation study tested the selection decisions and further supported the genotype choices. Sensory evaluation is a powerful tool to direct breeders to improve market acceptability and develop new edamame genotypes. Both screening and validation studies illustrate the significant role of consumer sensory data in support of genotypes targeted for domestic (U.S.) production.