Department of Mechanical Engineering
Permanent URI for this community
The Virginia Tech Mechanical Engineering Department serves its students, alumni, the Commonwealth of Virginia, and the nation through a variety of academic, research and service activities.
Our missions are to: holistically educate our students for professional leadership as creative problem-solvers in a diverse society, conduct advanced research for societal advancement, train graduate students for scholarly inquiry, and engage with alumni, industry, government, and community partners through outreach activities. In order to produce engineers prepared for success across a range of career paths, our academic program integrates training in engineering principles, critical thinking, hands-on projects, open-ended problem solving, and the essential skills of teamwork, communication, and ethics.
Browse
Browsing Department of Mechanical Engineering by Department "Chemistry"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Double helical conformation and extreme rigidity in a rodlike polyelectrolyteWang, Ying; He, Yadong; Yu, Zhou; Gao, Jianwei; ten Brinck, Stephanie; Slebodnick, Carla; Fahs, Gregory B.; Zanelotti, Curt J.; Hegde, Maruti; Moore, Robert Bowen; Ensing, Bernd; Dingemans, Theo J.; Qiao, Rui; Madsen, Louis A. (Nature Publishing Group, 2019-02-18)The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we report a double helical conformation in the densely charged aromatic polyamide poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~ 1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of other 1D-reinforced composites. © 2019, The Author(s).
- Friction of Extensible Strips: an Extended Shear Lag Model with Experimental EvaluationMojdehi, Ahmad R.; Holmes, Douglas P.; Williams, Christopher B.; Long, Timothy E.; Dillard, David A. (2016-02-22)
- The impact of sphingosine kinase inhibitor-loaded nanoparticles on bioelectrical and biomechanical properties of cancer cellsBabahosseini, Hesam; Srinivasaraghavan, Vaishnavi; Zhao, Zongmin; Gillam, Francis; Childress, Elizabeth; Strobl, Jeannine S.; Santos, Webster L.; Zhang, Chenming; Agah, Masoud (The Royal Society of Chemistry, 2015-11-19)Cancer progression and physiological changes within the cells are accompanied by alterations in the biophysical properties. Therefore, the cell biophysical properties can serve as promising markers for cancer detection and physiological activities. To aid in the investigation of the biophysical markers of cells, a microfluidic chip has been developed which consists of a constriction channel and embedded microelectrodes. Single-cell impedance magnitudes at four frequencies and entry and travel times are measured simultaneously during their transit through the constriction channel. This microchip provides a high-throughput, label-free, automated assay to identify biophysical signatures of malignant cells and monitor the therapeutic efficacy of drugs. Here, we monitored the dynamic cellular biophysical properties in response to sphingosine kinase inhibitors (SphKIs), and compared the effectiveness of drug delivery using poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) loaded with SphKIs versus conventional delivery. Cells treated with SphKIs showed significantly higher impedance magnitudes at all four frequencies. The bioelectrical parameters extracted using a model also revealed that the highly aggressive breast cells treated with SphKIs shifted electrically towards that of a less malignant phenotype; SphKI-treated cells exhibited an increase in cell-channel interface resistance and a significant decrease in specific membrane capacitance. Furthermore, SphKI-treated cells became slightly more deformable as measured by a decrease in their channel entry and travel times. We observed no significant difference in the bioelectrical changes produced by SphKI delivered conventionally or with NPs. However, NPs-packaged delivery of SphKI decreased the cell deformability. In summary, this study showed that while the bioelectrical properties of the cells were dominantly affected by SphKIs, the biomechanical properties were mainly changed by the NPs.
- Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damageKowalski, Elizabeth A.; Chen, Jiang; Hazy, Amanda; Fritsch, Lauren E.; Gudenschwager-Basso, Erwin K.; Chen, Michael; Wang, Xia; Qian, Yun; Zhou, Mingjun; Byerly, Matthew; Pickrell, Alicia M.; Matson, John B.; Allen, Irving C.; Theus, Michelle H. (2019-11-11)Background The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. Methods Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. Results EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. Conclusions Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.