Virginia Tech Carilion School of Medicine (VTCSOM)
Permanent URI for this community
Browse
Browsing Virginia Tech Carilion School of Medicine (VTCSOM) by Department "Chemistry"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmidJo, Ami; Ringel-Scaia, Veronica M.; McDaniel, Dylan K.; Thomas, Cassidy A.; Zhang, Rui; Riffle, Judy S.; Allen, Irving C.; Davis, Richey M. (2020-01-20)Background The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR–Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. Results Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR–Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2–3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. Conclusions In this work, plasmids for the CRISPR–Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR–Cas9 system.
- The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug targetHoagland, Daniel T.; Santos, Webster L.; Poelzing, Steven; Gourdie, Robert G. (Elsevier, 2018-09-19)Cardiovascular disease remains the single largest cause of natural death in the United States, with a significant cause of mortality associated with cardiac arrhythmias. Presently, options for treating and preventing myocardial electrical dysfunction, including sudden cardiac death, are limited. Recent studies have indicated that conduction of electrical activation in the heart may have an ephaptic component, wherein intercellular coupling occurs via electrochemical signaling across narrow extracellular clefts between cardiomyocytes. The perinexus is a 100-200 nm-wide stretch of closely apposed membrane directly adjacent to connexin 43 gap junctions. Electron and super-resolution microscopy studies, as well as biochemical analyses, have provided evidence that perinexal nanodomains may be candidate structures for facilitating ephaptic coupling. This work has included characterization of the perinexus as a region of close inter-membrane contact between cardiomyocytes (<30 nm) containing dense clusters of voltage-gated sodium channels. Here, we review what is known about perinexal structure and function and the potential that the perinexus may have novel and pivotal roles in disorders of cardiac conduction. Of particular interest is the prospect that cell adhesion mediated by the cardiac sodium channel b subunit (Scn1b) may be a novel anti-arrhythmic target.