Grado Department of Industrial and Systems Engineering
Permanent URI for this community
Browse
Browsing Grado Department of Industrial and Systems Engineering by Department "Mechanical Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk AssessmentsFino, Peter C.; Frames, Christopher W.; Lockhart, Thurmon E. (MDPI, 2015-05-06)Recent studies have reported a greater prevalence of spin turns, which are more unstable than step turns, in older adults compared to young adults in laboratory settings. Currently, turning strategies can only be identified through visual observation, either in-person or through video. This paper presents two unique methods and their combination to remotely monitor turning behavior using three uniaxial gyroscopes. Five young adults performed 90° turns at slow, normal, and fast walking speeds around a variety of obstacles while instrumented with three IMUs (attached on the trunk, left and right shank). Raw data from 360 trials were analyzed. Compared to visual classification, the two IMU methods’ sensitivity/specificity to detecting spin turns were 76.1%/76.7% and 76.1%/84.4%, respectively. When the two methods were combined, the IMU had an overall 86.8% sensitivity and 92.2% specificity, with 89.4%/100% sensitivity/specificity at slow speeds. This combined method can be implemented into wireless fall prevention systems and used to identify increased use of spin turns. This method allows for longitudinal monitoring of turning strategies and allows researchers to test for potential associations between the frequency of spin turns and clinically relevant outcomes (e.g., falls) in non-laboratory settings.
- Functional compartmentalization in the hemocoel of insectsPendar, Hodjat; Aviles, Jessica; Adjerid, Khaled; Schoenewald, Caroline; Socha, John J. (Springer Nature, 2019-04-15)The insect circulatory system contains an open hemocoel, in which the mechanism of hemolymph flow control is ambiguous. As a continuous fluidic structure, this cavity should exhibit pressure changes that propagate quickly. Narrow-waisted insects create sustained pressure differences across segments, but their constricted waist provides an evident mechanism for compartmentalization. Insects with no obvious constrictions between segments may be capable of functionally compartmentalizing the body, which could explain complex hemolymph flows. Here, we test the hypothesis of functional compartmentalization by measuring pressures in a beetle and recording abdominal movements. We found that the pressure is indeed uniform within the abdomen and thorax, congruent with the predicted behavior of an open system. However, during some abdominal movements, pressures were on average 62% higher in the abdomen than in the thorax, suggesting that functional compartmentalization creates a gradient within the hemocoel. Synchrotron tomography and dissection show that the arthrodial membrane and thoracic muscles may contribute to this dynamic pressurization. Analysis of volume change suggests that the gut may play an important role in regulating pressure by translating between body segments. Overall, this study suggests that functional compartmentalization may provide an explanation for how fluid flows are managed in an open circulatory system.