Journals
Permanent URI for this community
Browse
Browsing Journals by Department "Center for Drug Discovery"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Antiproliferative triterpenoid saponins from Leptaulus citroides Baill. from the Madagascar rain forestSu, Qingxi; Brodie, Peggy J.; Liu, Yixi; Miller, James S.; Andrianjafy, Naina M.; Antsiferana, Rabodo; Rasamison, Vincent E.; Kingston, David G. I. (Springer, 2016)Bioassay-guided fractionation of EtOH extracts obtained from the roots and wood of the Madagascan plant Leptaulus citroides Baill. (Cardiopteridaceae) led to the isolation of ethyl esters of three new triterpenoid saponins (1–3) and the known sesquiterpenoid cinnamosmolide (4). The structures of 1–3 were elucidated by extensive 1D and 2D NMR experiments and mass spectrometry. Compounds 1, 2, and 4 showed moderate cytotoxicity against the A2780 human ovarian cancer cell line with IC50 values of 2.8, 10.2 and 2.0 lM, respectively.
- Characterization of the Ornithine Hydroxylation Step in Albachelin BiosynthesisBufkin, Kendra; Sobrado, Pablo (MDPI, 2017-10-01)N-Hydroxylating monooxygenases (NMOs) are involved in siderophore biosynthesis. Siderophores are high affinity iron chelators composed of catechol and hydroxamate functional groups that are synthesized and secreted by microorganisms and plants. Recently, a new siderophore named albachelin was isolated from a culture of Amycolatopsis alba growing under iron-limiting conditions. This work focuses on the expression, purification, and characterization of the NMO, abachelin monooxygenase (AMO) from A. alba. This enzyme was purified and characterized in its holo (FAD-bound) and apo (FAD-free) forms. The apo-AMO could be reconstituted by addition of free FAD. The two forms of AMO hydroxylate ornithine, while lysine increases oxidase activity but is not hydroxylated and display low affinity for NADPH.
- Fluorescence Polarization Binding Assay for Aspergillus fumigatus Virulence Factor UDP-Galactopyranose MutaseQi, Jun; Oppenheimer, Michelle; Sobrado, Pablo (Hindawi, 2011-08-21)Aspergillus fumigatus is an opportunistic human pathogenic fungus responsible for deadly lung infections in immunocompromised individuals. Galactofuranose (Galf) residues are essential components of the cell wall and play an important role in A. fumigatus virulence. The flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose to UDP-galactofuranose, the biosynthetic precursor of Galf. Thus, inhibitors of UGM that block the biosynthesis of Galf can lead to novel chemotherapeutics for treating A. fumigatus-related diseases. Here, we describe the synthesis of fluorescently labeled UDP analogs and the development of a fluorescence polarization (FP) binding assay for A. fumigatus UGM (AfUGM). High-affinity binding to AfUGM was only obtained with the chromophore TAMRA, linked to UDP by either 2 or 6 carbons with Kd values of 2.6 ± 0.2 μM and 3.0 ± 0.7 μM, respectively. These values were ~6 times lower than when UDP was linked to fluorescein. The FP assay was validated against several known ligands and displayed an excellent Z′ factor (0.79 ± 0.02) and good tolerance to dimethyl sulfoxide.
- Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damageKowalski, Elizabeth A.; Chen, Jiang; Hazy, Amanda; Fritsch, Lauren E.; Gudenschwager-Basso, Erwin K.; Chen, Michael; Wang, Xia; Qian, Yun; Zhou, Mingjun; Byerly, Matthew; Pickrell, Alicia M.; Matson, John B.; Allen, Irving C.; Theus, Michelle H. (2019-11-11)Background The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. Methods Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. Results EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. Conclusions Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
- The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent MannerCallahan, Victoria; Hawks, Seth A.; Crawford, Matthew A.; Lehman, Caitlin W.; Morrison, Holly A.; Ivester, Hannah M.; Akhrymuk, Ivan V.; Boghdeh, Niloufar; Flor, Rafaela; Finkielstein, Carla V.; Allen, Irving C.; Weger-Lucarelli, James; Duggal, Nisha K.; Hughes, Molly A.; Kehn-Hall, Kylene (MDPI, 2021-06-03)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a ‘cytokine storm.’ In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.