Department of Entomology
Permanent URI for this community
Browse
Browsing Department of Entomology by Department "School of Plant and Environmental Sciences"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Chemical Compositions of Edamame Genotypes Grown in Different Locations in the USYu, Dajun; Lin, Tiantian; Sutton, Kemper L.; Lord, Nick; Carneiro, Renata C. V.; Jin, Qing; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Ross, W. Jeremy; Duncan, Susan E.; Yin, Yun; Wang, Hengjian; Huang, Haibo (2021-02-12)The consumption of edamame [Glycine max (L.) Merr.] in the US has rapidly increased due to its nutritional value and potential health benefits. In this study, 10 edamame genotypes were planted in duplicates in three different locations in the US-Whitethorne, Virginia (VA), Little Rock, Arkansas (AR), and Painter, VA. Edamame samples were harvested at the R6 stage of the bean development when beans filled 80-90% of the pod cavity. Afterward, comprehensive chemical composition analysis, including sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were conducted on powdered samples using standard methods and the total sweetness was calculated based on the measured sugars and alanine contents. Significant effects of the location were observed on all chemical constituents of edamame (p < 0.05). The average performance of the genotypes was higher in Whitethorne for the contents of free sucrose (59.29 mg/g), fructose (11.42 mg/g), glucose (5.38 mg/g), raffinose (5.32 mg/g), stachyose (2.34 mg/g), total sweetness (78.63 mg/g), and starch (15.14%) when compared to Little Rock and Painter. The highest soluble alanine (2.67 mg/g), NDF (9.00%), ash (5.60%), and moisture (70.36%) contents were found on edamame planted in Little Rock while edamame planted in Painter had the highest crude protein (43.11%) and oil (20.33%) contents. Significant effects of genotype were observed on most of the chemical constituents (p < 0.05) except NDF and raffinose. Among the 10 genotypes, R13-5029 consistently had high sucrose content and total sweetness across the three locations, meanwhile it had relatively high protein and fiber contents. Overall, the results indicate that to breed better edamame genotypes in the US, both genotype and planting location should be taken into considerations.
- Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae)McCullough, Christopher T.; Angelella, Gina M.; O'Rourke, Megan E. (MDPI, 2020-09-09)Planting wildflowers is a commonly suggested measure to conserve pollinators. While beneficial for pollinators, plots of wildflowers may be inadvertently performing an ecosystem disservice by providing a suitable habitat for arthropod disease vectors like ticks. The lone star tick, Amblyomma americanum (L.), is a medically important tick species that might be able to utilize wildflower plantings as a suitable habitat. In this two-year study, ticks were sampled using dry ice baited traps from wildflower plots, weedy field margins, and forested areas to determine if wildflower plantings were increasing the on-farm abundance of A. americanum. Abiotic and biotic environmental variables were also measured to better understand which factors affect A. americanum abundance. We found no more A. americanum in wildflower plots than in weedy field margins. Forested areas harbored the greatest number of A. americanum sampled. The height of the vegetation in the sampled habitats was a significant factor in determining A. americanum abundance. Depending on the sampled habitat and life stage, this relationship can be positive or negative. The relationship with vegetation height may be related to the behavior of the white-tailed deer and the questing success of A. americanum. Overall, wildflower plots do not pose an increased risk of exposure to A. americanum on farms.
- Evaluation of Insecticides to Control Stink Bug in Edamame, 2019Sutton, Kemper L.; Kuhar, Thomas P.; Rideout, Steven L.; Zhang, Bo (Oxford University Press, 2020-01-01)
- Fifty Years of Cereal Leaf Beetle in the U.S.: An Update on Its Biology, Management, and Current ResearchPhilips, Christopher R.; Herbert, D. Ames Jr.; Kuhar, Thomas P.; Reisig, Dominic D.; Thomason, Wade E.; Malone, Sean M. (Entomological Society of America, 2011-10-01)Cereal leaf beetle, Oulema melanopus L., is an introduced insect pest of small grains first recorded in the United States in the early 1960s. Since its introduction from Europe or Asia into Michigan, cereal leaf beetle has rapidly spread and can now be found in most states. Cereal leaf beetle feeds on numerous species of grasses and is considered a major pest of oats, barley, and wheat. Although several studies have investigated cereal leaf beetle biology and population dynamics, numerous gaps remain in understanding the mechanisms that influence its spread and distribution, which makes predicting pest outbreaks difficult. Because of the difficulty in predicting when and where pest outbreaks will occur many growers in the southeast apply insecticides on a calendar basis rather than using a threshold-based integrated pest management approach. Our challenge is to develop new information and procedures that will encourage growers to reevaluate the way they are approaching spring-time insect control in wheat, and consider adoption of the integrated pest management approach. This article is a review of cereal leaf beetle biology, past and present management practices, and current research being conducted.
- Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower stripsAngelella, Gina M.; McCullough, Christopher T.; O'Rourke, Megan E. (2021-02-05)Pollinator refuges such as wildflower strips are planted on farms with the goals of mitigating wild pollinator declines and promoting crop pollination services. It is unclear, however, whether or how these goals are impacted by managed honey bee (Apis mellifera L.) hives on farms. We examined how wildflower strips and honey bee hives and/or their interaction influence wild bee communities and the fruit count of two pollinator-dependent crops across 21 farms in the Mid-Atlantic U.S. Although wild bee species richness increased with bloom density within wildflower strips, populations did not differ significantly between farms with and without them whereas fruit counts in both crops increased on farms with wildflower strips during one of 2 years. By contrast, wild bee abundance decreased by 48%, species richness by 20%, and strawberry fruit count by 18% across all farm with honey bee hives regardless of wildflower strip presence, and winter squash fruit count was consistently lower on farms with wildflower strips with hives as well. This work demonstrates that honey bee hives could detrimentally affect fruit count and wild bee populations on farms, and that benefits conferred by wildflower strips might not offset these negative impacts. Keeping honey bee hives on farms with wildflower strips could reduce conservation and pollination services.
- Utilizing Consumer Perception of Edamame to Guide New Variety DevelopmentCarneiro, Renata C. V.; Duncan, Susan E.; O'Keefe, Sean F.; Yu, Dajun; Huang, Haibo; Yin, Yun; Neill, Clinton L.; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Reiter, Mark S.; Ross, W. Jeremy; Chen, Pengyin; Gillen, Anne (2021-01-18)Consumption of edamame (vegetable soybeans) has increased significantly in the U.S. over the last 20 years. Although market demand has been increasing, most edamame is still imported from Asian countries. A team of multistate plant-breeding programs in the mid-Atlantic and Southeast U.S. has focused on developing new breeding lines that grow well in the U.S. and deliver what domestic growers, processors and consumers need and expect from their edamame. In our study, sensory evaluation was used to identify edamame genotypes and sensory attributes preferred by consumers to support breeding selection criteria. In the first year (reported as our "screening study"), 20 edamame genotypes were grown in three locations: Newport, AR, and Blacksburg and Painter, VA. In the second year (reported as our "validation study"), 10 edamame genotypes selected after our screening study were grown in Blacksburg and Painter, VA, Portageville, MO, and Stoneville, MS. In both years of research, untrained participants (adults; vegetable consumers not allergic to soy; N >= 50) used a traditional 9-point acceptability (hedonic) scale (1 = "dislike extremely"; 9 = "like extremely") to evaluate overall-liking, aroma, appearance, taste, and texture, and a 5-point scale (1 = "not sweet," 5 = "extremely sweet") to evaluate sweetness intensity. Next, participants used a check-all-that-apply (CATA) list of selected sensory terms to describe the sensory characteristics of each edamame sample. Overall acceptability of edamame genotypes was significantly different among all genotypes (p < 0.05). Samples described as "bitter," "sour" (flavor) or "starchy" (texture) were associated with lower acceptability scores while "salty" and "sweet" (flavor) were correlated with higher acceptability. Sensory data from the screening study were used to select the best genotypes by use of a defined decision process based on the consumer data. The validation study tested the selection decisions and further supported the genotype choices. Sensory evaluation is a powerful tool to direct breeders to improve market acceptability and develop new edamame genotypes. Both screening and validation studies illustrate the significant role of consumer sensory data in support of genotypes targeted for domestic (U.S.) production.
- Wireworm Control Experiment in Potatoes in Abingdon, VA in 2011Kuhar, Thomas P.; Blevins, Philip (Virginia Cooperative Extension, 2011)Describes an experiment to control Wireworms in a potato field, and discusses the results.