Department of Biomedical Sciences and Pathobiology
Permanent URI for this community
Browse
Browsing Department of Biomedical Sciences and Pathobiology by Department "Animal and Poultry Sciences"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Differentiating Vaccine-Related Fowl Cholera from Naturally Occurring DiseaseHutcheson, Anna R.; Thompson, Kasey; Maurer, John J.; Ferguson, Naola; Grogan, Karen; Roney, Stephen; Seahorn, Harmony; Lobsinger, Chris; Lee, Margie D. (2020-12)Vaccine-related fowl cholera must be considered when flock mortality increases after use of a live Pasteurella multocida vaccine product. All registered live vaccines serotype as Heddleston 3,4; however, in some regions this is also the most common scrotype of outbreak isolates in broiler breeders and turkeys. Therefore, serotyping may not be useful for diagnosing vaccine-related fowl cholera. This project sought to apply a vaccine-specific test to differentiate vaccine-related disease from naturally occurring outbreaks. Results indicate that vaccine strains were commonly isolated from broiler breeders exhibiting signs of fowl cholera postvaccination, but some of these isolates exhibited only serotype 4 antigenicity. The isolates' lipopolysaccharides, the target antigen for serotyping, contained compositional changes that may explain the varying serotype results and virulence of the commercial preparations. These results suggest that vaccine-related disease may be common in broiler breeders, and live commercial vaccine preparations need to be assessed for serotype and titer prior to use in order to reduce vaccine-related fowl cholera.
- Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporationHendricks-Wenger, Alissa; Aycock, Kenneth N.; Nagai-Singer, Margaret A.; Coutermarsh-Ott, Sheryl; Lorenzo, Melvin F.; Gannon, Jessica; Uh, Kyungjun; Farrell, Kayla; Beitel-White, Natalie; Brock, Rebecca M.; Simon, Alexander; Morrison, Holly A.; Tuohy, Joanne L.; Clark-Deener, Sherrie; Vlaisavljevich, Eli; Davalos, Rafael V.; Lee, Kiho; Allen, Irving C. (Nature Research, 2021-04-07)New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
- Evaluating the relationship between fecal egg count, FAMACHA score, and weight in dewormed and non-dewormed Katahdin rams during a parasite challengeGalyon, Hailey R.; Zajac, Anne M.; Wright, D. Lee; Greiner, Scott P.; Bradford, Heather L. (Oxford University Press, 2020-10-01)The objective of this study was to evaluate and to estimate the relationship between fecal egg counts (FECs) and FAMACHA score and the body weight of growing Katahdin rams during a parasite challenge. One of the largest factors negatively influencing reproduction and economics in the sheep industry is gastrointestinal nematode (GIN) parasites. Due to anthelmintic resistance of these parasites, animals are selected for parasite resistance using FEC and FAMACHA scores. Data were used from the Virginia Tech Southwest Agricultural Research and Extension Center Ram Test in Glade Spring, VA, from the year 2012 to 2018 in which animals were tested in 14-d intervals for 70 d. Mixed models for repeated weight measurements were made from backward stepwise selection to evaluate the relationships between weight and GIN FEC. A total of 576 animals within 23 contemporary groups derived from test year and pasture group were analyzed. Ram, contemporary group, and consignor were considered random effects, and fixed effects were birth type, test day, age, age squared, starting weight, FEC, and FAMACHA score. Pairwise contrasts were used in the statistical analysis of parameters and their interactions. Weight and age were found to have a quadratic relationship. Increased FEC was associated with weight loss at a rate of 0.00030 kg/FEC (P < 0.0001). Animals dewormed at any point during the trial weighed less than those that were not and increased with test day to a maximum difference of 4.66 kg (P < 0.001). FAMACHA score was found to be significant (P < 0.05), but a direct relationship with weight was not conclusive. Overall, rams with severe enough parasite load to require deworming had lesser weights, which could impact the profitability of sheep production and reinforced the need to select animals that had greater innate parasite resistance.
- Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiencyLei, Shaohua; Ryu, Junghyun; Wen, Ke; Twitchell, Erica; Bui, Tammy; Ramesh, Ashwin; Weiss, Mariah; Li, Guohua; Samuel, Helen; Clark-Deener, Sherrie; Jiang, Xi; Lee, Kiho; Yuan, Lijuan (Nature Publishing Group, 2016-04-27)Application of genetically engineered (GE) large animals carrying multi-allelic modifications has been hampered by low efficiency in production and extended gestation period compared to rodents. Here, we rapidly generated RAG2/IL2RG double knockout pigs using direct injection of CRISPR/Cas9 system into developing embryos. RAG2/IL2RG deficient pigs were immunodeficient, characterized by depletion of lymphocytes and either absence of or structurally abnormal immune organs. Pigs were maintained in gnotobiotic facility and evaluated for human norovirus (HuNoV) infection. HuNoV shedding lasted for 16 days in wild type pigs, compared to 27 days (until the end of trials) in RAG2/IL2RG deficient pigs. Additionally, higher HuNoV titers were detected in intestinal tissues and contents and in blood, indicating increased and prolonged HuNoV infection in RAG2/IL2RG deficient pigs and the importance of lymphocytes in HuNoV clearance. These results suggest that GE immunodeficient gnotobiotic pigs serve as a novel model for biomedical research and will facilitate HuNoV studies.
- Pathogenesis and shedding of Usutu virus in juvenile chickensKuchinsky, Sarah C.; Frere, Francesca; Heitzman-Breen, Nora; Golden, Jacob; Vázquez, Ana; Honaker, Christa F.; Siegel, Paul B.; Ciupe, Stanca M.; LeRoith, Tanya; Duggal, Nisha K. (Taylor & Francis, 2021-01-01)Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
- The Role of the Salmonella spvB IncF Plasmid and Its Resident Entry Exclusion Gene traS on Plasmid ExclusionOluwadare, Mopelola; Lee, Margie D.; Grim, Christopher J.; Lipp, Erin K.; Cheng, Ying; Maurer, John J. (2020-05-15)Salmonella enterica cause significant illnesses worldwide. There has been a marked increase in resistance to fluoroquinolones and beta-lactams/cephalosporins, antibiotics commonly used to treat salmonellosis. However, S. enterica serovars vary in their resistance to these and other antibiotics. The systemic virulence of some Salmonella serovars is due to a low copy number, IncF plasmid (65-100 kb) that contains the ADP-ribosylating toxin, SpvB. This virulence plasmid is present in only nine Salmonella serovars. It is possible that the spvB-virulence plasmid excludes other plasmids and may explain why antibiotic resistance is slow to develop in certain Salmonella serovars such as S. Enteritidis. The distribution of plasmid entry exclusion genes traS/traT and traY/excA are variable in Salmonella IncF and IncI plasmids, respectively and may account for differences in emergent antimicrobial resistance for some Salmonella serovars. The goal of this study is to determine the contribution of the Salmonella spvB-virulence plasmid in F-plasmid exclusion. From conjugation experiments, S. Typhimurium exhibited lower conjugation frequency with incFI and incFII plasmids when the spvB-virulence plasmid is present. Furthermore, introduction of cloned incFI traS into a "plasmidless" S. Typhimurium LT2 strain and Escherichia coli DH5 alpha excluded incFI plasmid. However, deletion of the virulence plasmid traS did not affect plasmid exclusion significantly compared to a spvB control deletion. In addition, differences in F plasmid conjugation in natural Salmonella isolates did not correlate with IncF or SpvB-virulence plasmid genotype. There appear to be other plasmid or chromosomal genes at play in plasmid exclusion that may be responsible for the slow development of antibiotic resistance in certain serovars.
- Variation in Eimeria oocyst count and species composition in weanling beef heifersLucas, A. S.; Swecker, William S.; Scaglia, G.; Lindsay, David S.; Zajac, Anne M. (American Society of Parasitology, 2006-10)Rectal fecal samples were collected daily on 10 consecutive days in November 2004 from I I weaned beef heifers to assess daily variation in fecal oocyst count and species composition. Subsequent samples were collected from the same animals on 15 April 2005 and 9 June 2005. Oocyst numbers were determined by the modified McMaster's test, and species were identified by examination of oocysts recovered with the Wisconsin sugar flotation technique. Soil samples were collected from the heifer pasture on 8 June 2005, and oocysts were quantified and identified to species. Mean fecal oocyst counts varied little at all sampling dates ranging from 134-377 oocysts/g. Ten Eimeria spp. were identified in fecal samples collected in November and April and 11 in June. Eimeria bovis was the most common species identified at all samplings. Mean species composition showed little variation during the 10-day sampling period in November, remained similar in April, and varied slightly in June. Twelve Eimeria spp. were identified in soil samples in proportions similar to those seen in fecal samples. The results indicate that clinically normal weanling beef heifers are likely to be infected with a diverse, but relatively stable, community of Eimeria spp.