Department of Biomedical Sciences and Pathobiology
Permanent URI for this community
Browse
Browsing Department of Biomedical Sciences and Pathobiology by Department "Biological Systems Engineering"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Cell-free protein synthesis of norovirus virus-like particlesSheng, Jiayuan; Lei, Shaohua; Yuan, Lijuan; Feng, Xueyang (Royal Society of Chemistry, 2017-05-25)Norovirus vaccine development largely depends on recombinant virus-like-particles (VLPs). Norovirus VLPs have been produced in several cell-based expression systems with long production times. Here we report, for the first time, that norovirus VLPs can be expressed and assembled by using a cell-free protein expression system within four hours.
- In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition mattersHu, Yun; Ehrich, Marion F.; Fuhrman, Kristel; Zhang, Chenming (Springer, 2014-08-27)Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.
- Production and evaluation of virus-like particles displaying immunogenic epitopes of porcine reproductive and respiratory syndrome virus (PRRSV)Murthy, Ambika Mosale Venkatesh; Ni, Yan-Yan; Meng, Xiang-Jin; Zhang, Chenming (MDPI, 2015-04-14)Porcine reproductive and respiratory syndrome (PRRS) is the most significant infectious disease currently affecting the swine industry worldwide. Several inactivated and modified live vaccines (MLV) have been developed to curb PRRSV infections. However, the efficacy and safety of these vaccines are unsatisfactory, and hence, there is a strong demand for the development of new PRRS universal vaccines. Virus-like particle (VLP)-based vaccines are gaining increasing acceptance compared to subunit vaccines, as they present the antigens in a more veritable conformation and are readily recognized by the immune system. Hepatitis B virus core antigen (HBcAg) has been successfully used as a carrier for more than 100 viral sequences. In this study, hybrid HBcAg VLPs were generated by fusion of the conserved protective epitopes of PRRSV and expressed in E. coli. An optimized purification protocol was developed to obtain hybrid HBcAg VLP protein from the inclusion bodies. This hybrid HBcAg VLP protein self-assembled to 23-nm VLPs that were shown to block virus infection of susceptible cells when tested on MARC 145 cells. Together with the safety of non-infectious and non-replicable VLPs and the low cost of production through E. coli fermentation, this hybrid VLP could be a promising vaccine candidate for PRRS.
- Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localizationZhao, Zongmin; Hu, Yun; Harmon, Theresa; Pentel, Paul; Ehrich, Marion F.; Zhang, Chenming (2017-09-01)A lipid-polymeric hybrid nanoparticle-based next-generation nicotine nanovaccine was rationalized in this study to combat nicotine addiction. A series of nanovaccines, which had nicotine-haptens localized on carrier protein (LPKN), nanoparticle surface (LPNK), or both (LPNKN), were designed to study the impact of hapten localization on their immunological efficacy. All three nanovaccines were efficiently taken up and processed by dendritic cells. LPNKN induced a significantly higher immunogenicity against nicotine and a significantly lower anti-carrier protein antibody level compared to LPKN and LPNK. Meanwhile, it was found that the anti-nicotine antibodies elicited by LPKN and LPNKN bind nicotine stronger than those elicited by LPKN, and LPNK and LPNKN resulted in a more balanced Th1-Th2 immunity than LPKN. Moreover, LPNKN exhibited the best ability to block nicotine from entering the brain of mice. Collectively, the results demonstrated that the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine could be enhanced by modulating hapten localization, providing a promising strategy to combatting nicotine addiction.