Department of Statistics
Permanent URI for this community
Browse
Browsing Department of Statistics by Department "Biomedical Engineering and Mechanics"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Decision-adjusted driver risk predictive models using kinematics informationMao, Huiying; Guo, Feng; Deng, Xinwei; Doerzaph, Zachary R. (Elsevier, 2021-06)Accurate prediction of driving risk is challenging due to the rarity of crashes and individual driver heterogeneity. One promising direction of tackling this challenge is to take advantage of telematics data, increasingly available from connected vehicle technology, to obtain dense risk predictors. In this work, we propose a decision-adjusted framework to develop optimal driver risk prediction models using telematics-based driving behavior information. We apply the proposed framework to identify the optimal threshold values for elevated longitudinal acceleration (ACC), deceleration (DEC), lateral acceleration (LAT), and other model parameters for predicting driver risk. The Second Strategic Highway Research Program (SHRP 2) naturalistic driving data were used with the decision rule of identifying the top 1% to 20% of the riskiest drivers. The results show that the decision-adjusted model improves prediction precision by 6.3% to 26.1% compared to a baseline model using non-telematics predictors. The proposed model is superior to models based on a receiver operating characteristic curve criterion, with 5.3% and 31.8% improvement in prediction precision. The results confirm that the optimal thresholds for ACC, DEC and LAT are sensitive to the decision rules, especially when predicting a small percentage of high-risk drivers. This study demonstrates the value of kinematic driving behavior in crash risk prediction and the necessity for a systematic approach for extracting prediction features. The proposed method can benefit broad applications, including fleet safety management, use-based insurance, driver behavior intervention, as well as connected-vehicle safety technology development.
- Development of a Concussion Risk Function for a Youth Population Using Head Linear and Rotational AccelerationCampolettano, Eamon T.; Gellner, Ryan A.; Smith, Eric P.; Bellamkonda, Srinidhi; Tierney, Casey T.; Crisco, Joseph J.; Jones, Derek A.; Kelley, Mireille E.; Urban, Jillian E.; Stitzel, Joel D.; Genemaras, Amaris; Beckwith, Jonathan G.; Greenwald, Richard M.; Maerlender, Arthur C.; Brolinson, Per Gunnar; Duma, Stefan M.; Rowson, Steven (Springer, 2019-10-28)Physical differences between youth and adults, which include incomplete myelination, limited neck muscle development, and a higher head-body ratio in the youth population, likely contribute towards the increased susceptibility of youth to concussion. Previous research efforts have considered the biomechanics of concussion for adult populations, but these known age-related differences highlight the necessity of quantifying the risk of concussion for a youth population. This study adapted the previously developed Generalized Acceleration Model for Brian Injury Threshold (GAMBIT) that combines linear and rotational head acceleration to model the risk of concussion for a youth population with the Generalized Acceleration Model for Concussion in Youth (GAM-CY). Survival analysis was used in conjunction with head impact data collected during participation in youth football to model risk between individuals who sustained medically-diagnosed concussions (n = 15). Receiver operator characteristic curves were generated for peak linear acceleration, peak rotational acceleration, and GAM-CY, all of which were observed to be better injury predictors than random guessing. GAM-CY was associated with an area under the curve of 0.89 (95% confidence interval: 0.82–0.95) when all head impacts experienced by the concussed players were considered. Concussion tolerance was observed to be lower for youth athletes, with average peak linear head acceleration of 62.4 ± 29.7 g compared to 102.5 ± 32.7 g for adults and average peak rotational head acceleration of 2609 ± 1591 rad/s2 compared to 4412 ± 2326 rad/s2. These data provide further evidence of age-related differences in concussion tolerance and may be used for the development of youth-specific protective designs.
- Raman chemometric urinalysis (Rametrix) as a screen for bladder cancerHuttanus, Herbert M.; Vu, Tommy; Guruli, Georgi; Tracey, Andrew; Carswell, William; Said, Neveen; Du, Pang; Parkinson, Bing G.; Orlando, Giuseppe; Robertson, John L.; Senger, Ryan S. (2020-08-21)Bladder cancer (BCA) is relatively common and potentially recurrent/progressive disease. It is also costly to detect, treat, and control. Definitive diagnosis is made by examination of urine sediment, imaging, direct visualization (cystoscopy), and invasive biopsy of suspect bladder lesions. There are currently no widely-used BCA-specific biomarker urine screening tests for early BCA or for following patients during/after therapy. Urine metabolomic screening for biomarkers is costly and generally unavailable for clinical use. In response, we developed Raman spectroscopy-based chemometric urinalysis (Rametrix (TM)) as a direct liquid urine screening method for detecting complex molecular signatures in urine associated with BCA and other genitourinary tract pathologies. In particular, the Rametrix(TM)screen used principal components (PCs) of urine Raman spectra to build discriminant analysis models that indicate the presence/absence of disease. The number of PCs included was varied, and all models were cross-validated by leave-one-out analysis. In Study 1 reported here, we tested the Rametrix (TM) screen using urine specimens from 56 consented patients from a urology clinic. This proof-of-concept study contained 17 urine specimens with active BCA (BCA-positive), 32 urine specimens from patients with other genitourinary tract pathologies, seven specimens from healthy patients, and the urinalysis control Surine(TM). Using a model built with 22 PCs, BCA was detected with 80.4% accuracy, 82.4% sensitivity, 79.5% specificity, 63.6% positive predictive value (PPV), and 91.2% negative predictive value (NPV). Based on the number of PCs included, we found the Rametrix(TM)screen could be fine-tuned for either high sensitivity or specificity. In other studies reported here, Rametrix(TM)was also able to differentiate between urine specimens from patients with BCA and other genitourinary pathologies and those obtained from patients with end-stage kidney disease (ESKD). While larger studies are needed to improve Rametrix(TM)models and demonstrate clinical relevance, this study demonstrates the ability of the Rametrix(TM)screen to differentiate urine of BCA-positive patients. Molecular signature variances in the urine metabolome of BCA patients included changes in: phosphatidylinositol, nucleic acids, protein (particularly collagen), aromatic amino acids, and carotenoids.
- Spectral characteristics of urine specimens from healthy human volunteers analyzed using Raman chemometric urinalysis (Rametrix)Senger, Ryan S.; Kavuru, Varun; Sullivan, Meaghan; Gouldin, Austin; Lundgren, Stephanie; Merrifield, Kristen; Steen, Caitlin; Baker, Emily; Vu, Tommy; Agnor, Ben; Martinez, Gabrielle; Coogan, Hannah; Carswell, William; Karageorge, Lampros; Dev, Devasmita; Du, Pang; Sklar, Allan; Orlando, Giuseppe; Pirkle, James, Jr.; Robertson, John L. (PLOS, 2019-09-27)Raman chemometric urinalysis (Rametrix™) was used to analyze 235 urine specimens from healthy individuals. The purpose of this study was to establish the “range of normal” for Raman spectra of urine specimens from healthy individuals. Ultimately, spectra falling outside of this range will be correlated with kidney and urinary tract disease. Rametrix™ analysis includes direct comparisons of Raman spectra but also principal component analysis (PCA), discriminant analysis of principal components (DAPC) models, multivariate statistics, and it is available through GitHub as the Rametrix™ LITE Toolbox for MATLAB®. Results showed consistently overlapping Raman spectra of urine specimens with significantly larger variances in Raman shifts, found by PCA, corresponding to urea, creatinine, and glucose concentrations. A 2-way ANOVA test found that age of the urine specimen donor was statistically significant (p < 0.001) and donor sex (female or male identification) was less so (p = 0.0526). With DAPC models and blind leave-one-out build/test routines using the Rametrix™ PRO Toolbox (also available through GitHub), an accuracy of 71% (sensitivity = 72%; specificity = 70%) was obtained when predicting whether a urine specimen from a healthy unknown individual was from a female or male donor. Finally, from female and male donors (n = 4) who contributed first morning void urine specimens each day for 30 days, the co-occurrence of menstruation was found statistically insignificant to Rametrix™ results (p = 0.695). In addition, Rametrix™ PRO was able to link urine specimens with the individual donor with an average of 78% accuracy. Taken together, this study established the range of Raman spectra that could be expected when obtaining urine specimens from healthy individuals and analyzed by Rametrix™ and provides the methodology for linking results with donor characteristics.