Department of Biological Sciences
Permanent URI for this community
Browse
Browsing Department of Biological Sciences by Department "Biological Systems Engineering"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Exploring the activity of a polyazine bridged Ru(ii)-Pt(ii) supramolecule in F98 rat malignant glioma cellsZhu, Jie; Rodriguez-Corrales, José Á.; Prussin, Reece; Zhao, Zongmin; Dominijanni, Anthony; Hopkins, Samantha L.; Winkel, Brenda S. J.; Robertson, John L.; Brewer, Karen J. (Royal Society of Chemistry, 2016-11-07)The mixed-metal supramolecular complex, [(Ph2phen)2Ru(dpp)PtCl2]2+, displays significant DNA modification, cell growth inhibition, and toxicity towards F98 malignant glioma cells following visible light irradiation. The design of this complex affords superior cellular uptake and antiproliferative activity compared to the classic chemotherapeutic agent, cisplatin.
- Identification of soil bacteria capable of utilizing a corn ethanol fermentation byproductPackard, Holly; Taylor, Zachary W.; Williams, Stephanie L.; Guimarães, Pedro Ivo; Toth, Jackson; Jensen, Roderick V.; Senger, Ryan S.; Kuhn, David D.; Stevens, Ann M. (PLoS, 2019-03-08)A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup. The resulting PCR products were sequenced using Illumina MiSeq protocols, analyzed via the program QIIME, and the alpha-diversity was calculated. Seven bacterial families were the most prevalent in the bioreactor community after eight days of enrichment: Clostridiaceae, Alicyclobacillaceae, Ruminococcaceae, Burkholderiaceae, Bacillaceae, Veillonellaceae, and Enterobacteriaceae. Pure culture isolates obtained from the reactors, and additional laboratory stock strains, capable of facultative growth, were grown aerobically in microtiter plates with the syrup substrate to monitor growth yield. Reactor isolates of interest were identified at a species level using the full 16S rRNA gene and other biomarkers. Bacillus species, commonly used as probiotics in aquaculture, showed the highest biomass yield of the monocultures examined. Binary combinations of monocultures yielded no apparent synergism between organisms, suggesting competition for nutrients instead of cooperative metabolite conversion.
- Salt dilution and flushing dynamics of an impaired agricultural−urban streamLakoba, Vasiliy T.; Wind, Lauren L.; DeVilbiss, Stephen; Lofton, Mary E.; Bretz, Kristen; Weinheimer, Alaina R.; Moore, Chloe; Baciocco, Colin; Hotchkiss, Erin R.; Hession, W. Cully (2020-11-09)Anthropogenic freshwater salinization is increasing with global change. Rising freshwater salinity threatens ecosystem biodiversity, health, and services via toxicity to organisms and mobilization of nutrients and metals. Brining roads is one major source of freshwater salinization that continues to grow with rising urbanization. While the detrimental effects of salinization in streams are well-documented, high-frequency, temporal patterns in salt transport, particularly during winter road de-icing in mixed land use landscapes, are less understood. To address this knowledge gap, we analyzed high-frequency specific conductance as a proxy for salinity across 114 high-flow events from 2013 to 2018 in an impaired stream draining mixed agriculture−urban land use. The specific conductance was highest in winter (median = 947 μS cm−1) and decreased with first-order kinetics up to 90 days after brining (β1 = −0.003), suggesting lasting impacts of road de-icing on water quality. Although hysteresis patterns suggested a transition from distal to proximal salt sources, they showed no clear correlation of flushing versus dilution to brining events. While seasonal brining increased salinity in receiving streams, unpredictable transport dynamics reduced the efficacy of hysteresis in characterizing salt transport dynamics. Thus, the complexity of mixed land use watersheds requires more spatially and temporally explicit monitoring to characterize stream salinization dynamics.