Strategic Growth Area: Economical and Sustainable Materials (ESM)
Permanent URI for this collection
Browse
Browsing Strategic Growth Area: Economical and Sustainable Materials (ESM) by Department "Electrical and Computer Engineering"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation StudyHajjiah, Ali; Kandas, Ishac; Shehata, Nader (MDPI, 2018-09-05)Recently, hybrid organic-inorganic perovskites have been extensively studied due to their promising optical properties with relatively low-cost and simple processing. However, the perovskite solar cells have some low optical absorption in the visible spectrum, especially around the red region. In this paper, an improvement of perovskite solar cell efficiency is studied via simulations through adding plasmonic nanoparticles (NPs) at the rear side of the solar cell. The plasmonic resonance wavelength is selected to be very close to the spectrum range of lower absorption of the perovskite: around 600 nm. Both gold and silver nanoparticles (Au and Ag NPs) are selected to introduce the plasmonic effect with diameters above 40 nm, to get an overlap between the plasmonic resonance spectrum and the requested lower absorption spectrum of the perovskite layer. Simulations show the increase in the short circuit current density (Jsc) as a result of adding Au and Ag NPs, respectively. Enhancement in Jsc is observed as the diameter of both Au and Ag NPs is increased beyond 40 nm. Furthermore, there is a slight increase in the reflection loss as the thickness of the plasmonic nanoparticles at the rear side of the solar cell is increased. A significant decrease in the current loss due to transmission is achieved as the size of the nanoparticles increases. As a comparison, slightly higher enhancement in external quantum efficiency (EQE) can be achieved in case of adding Ag NPs rather than Au NPs.
- Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxyHudait, Mantu K.; Zhu, Y.; Maurya, Deepam; Priya, Shashank (AIP Publishing, 2013-03-01)The band alignment properties of atomic layer HfO2 film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO2 film. The measured valence band offset value of HfO2 relative to (110)Ge was 2.28 +/- 0.05 eV. The extracted conduction band offset value was 2.66 +/- 0.1 eV using the bandgaps of HfO2 of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO2/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794838]
- Gold/QDs-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement as a Quenching SensorShehata, Nader; Samir, Effat; Kandas, Ishac (MDPI, 2020-02-12)This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found that in-situ Au NPs of a 530 nm plasmonic resonance wavelength provides the highest fluorescence emissions of ceria NPs compared to other embedded plasmonic structures. In addition to the optical coupling between plasmonic resonance of Au with the visible emissions fluorescence spectrum of ceria nanoparticles, the 530 nm in-situ Au NPs were found to reduce the bandgap of ceria NPs. We suggest that the formation of more tri-valent cerium ions traps energy levels along with more associated oxygen vacancies, which is responsible for increasing the fluorescence visible emissions intensity caused by ceria. As an application, the gold-ceria NPs is shown to optically detect the varied concentration of iron tiny particles in aqueous medium based on a fluorescence quenching mechanism. This work is promising in different applications such as biomarkers, cancer treatments, and environmental pollution monitoring.
- Hybrid metamaterials for electrically triggered multifunctional controlLiu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H. (Springer Nature, 2016-10-27)Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.
- In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved OxygenShehata, Nader; Kandas, Ishac; Samir, Effat (MDPI, 2020-02-12)Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO quencher detection. This enhancement was due to optical coupling between the fluorescence emission spectrum of ceria with the surface plasmonic resonance of gold nanoparticles. In addition, gold caused the decrease of ceria nanoparticles’ bandgap, which indicates the formation of more oxygen vacancies inside the non-stoichiometric crystalline structure of ceria. The Stern–Volmer constant, which indicates the sensitivity of optical sensing material, of ceria–gold NPs with added DO was found to be 893.7 M−1, compared to 184.6 M−1 to in case of ceria nanoparticles only, which indicates a superior optical sensitivity to DO compared to other optical sensing materials used in the literature to detect DO. Moreover, the fluorescence lifetime was found to be changed according to the variation of added DO concentration. The optically-sensitivity-enhanced ceria nanoparticles due to embedded gold nanoparticles can be a promising sensing host for dissolved oxygen in a wide variety of applications including biomedicine and water quality monitoring.
- Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and CharacterizationElnabawy, Eman; Hassanin, Ahmed H.; Shehata, Nader; Popelka, Anton; Nair, Remya; Yousef, Saifallah; Kandas, Ishac (MDPI, 2019-10-10)Poly (vinylidene fluoride) nanofibers (PVDF NFs) have been extensively used in energy harvesting applications due to their promising piezoresponse characteristics. However, the mechanical properties of the generated fibers are still lacking. Therefore, we are presenting in this work a promising improvement in the elasticity properties of PVDF nanofibrous membrane through thermoplastic polyurethane (TPU) additives. Morphological, physical, and mechanical analyses were performed for membranes developed from different blend ratios. Then, the impact of added weight ratio of TPU on the piezoelectric response of the formed nanofibrous composite membranes was studied. The piezoelectric characteristics were studied through impulse loading testing where the electric voltage had been detected under applied mass weights. Piezoelectric characteristics were investigated further through a pressure mode test the developed nanofibrous composite membranes were found to be mechanically deformed under applied electric potential. This work introduces promising high elastic piezoelectric materials that can be used in a wide variety of applications including energy harvesting, wearable electronics, self-cleaning filters, and motion/vibration sensors.
- Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk NanofibersShehata, Nader; Kandas, Ishac; Hassounah, Ibrahim; Sobolčiak, Patrik; Krupa, Igor; Mrlik, Miroslav; Popelka, Anton; Steadman, Jesse; Lewis, Randolph (MDPI, 2018-08-01)This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level humidity, beyond a relative humidity of 70%. The mechanical characterizations of the nanofibers show promising results, with Young’s modulus and maximum strain of up to 4.32 MPa and 40.90%, respectively. One more interesting feature is the electric resistivity of the spider silk nanofibers, which were observed to be decaying with humidity over time, showing a cyclic effect in both the absence and presence of humidity due to the cyclic shrinkage/expansion of the protein chains. The synthesized nanocomposite can be useful for further biomedical applications, such as nerve cell regrowth and drug delivery.
- Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversionsShehata, Nader; Meehan, Kathleen; Hassounah, Ibrahim; Hudait, Mantu K.; Jain, Nikhil; Clavel, Michael B.; Elhelw, Sarah; Madi, Nabil (Springer, 2014-05-13)This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce3+ ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.
- Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber DrawingTousi, Maryam Mesgarpour; Zhang, Yujing; Wan, Shaowei; Yu, Li; Hou, Chong; Yan, Ning; Fink, Yoel; Wang, Anbo; Jia, Xiaoting (MDPI, 2019-12-02)In this study, we fabricated a highly flexible fiber-based capacitive humidity sensor using a scalable convergence fiber drawing approach. The sensor’s sensing layer is made of porous polyetherimide (PEI) with its porosity produced in situ during fiber drawing, whereas its electrodes are made of copper wires. The porosity induces capillary condensation starting at a low relative humidity (RH) level (here, 70%), resulting in a significant increase in the response of the sensor at RH levels ranging from 70% to 80%. The proposed humidity sensor shows a good sensitivity of 0.39 pF/% RH in the range of 70%–80% RH, a maximum hysteresis of 9.08% RH at 70% RH, a small temperature dependence, and a good stability over a 48 h period. This work demonstrates the first fiber-based humidity sensor fabricated using convergence fiber drawing.
- Static-Aligned Piezoelectric Poly (Vinylidene Fluoride) Electrospun Nanofibers/MWCNT Composite Membrane: Facile MethodShehata, Nader; Elnabawy, Eman; Abdelkader, Mohamed; Hassanin, Ahmed H.; Salah, Mohamed; Nair, Remya; Ahmad Bhat, Sameer (MDPI, 2018-09-01)Polyvinylidene Fluoride (PVDF) piezoelectric electrospun nanofibers have been intensively used for sensing and actuation applications in the last decade. However, in most cases, random PVDF piezoelectric nanofiber mats have moderate piezoelectric response compared to aligned PVDF nanofibers. In this work, we demonstrate the effect of alignment conducted by a collector setup composed of two-metal bars with gab inside where the aligned fiber can be formed. That is what we called static aligned nanofibers, which is distinct from the dynamic traditional technique using a high speed rotating drum. The two-bar system shows a superior alignment degree for the PVDF nanofibers. Also, the effect of added carbon nanotubes (CNTs) of different concentrations to PVDF nanofibers is studied to observe the enhancement of piezoelectric response of PVDF nanofibers. Improvement of β-phase content of aligned (PVDF) nanofibers, as compared to randomly orientated fibers, is achieved. Significant change in the piezoelectricity of PVDF fiber is produced with added CNTs with saturation response in the case of 0.3 wt % doping of CNTs, and piezoelectric sensitivity of 73.8 mV/g with applied masses down to 100 g.
- Structural and optical properties of sulfur passivated epitaxial step-graded GaAs₁₋ySby materialsHudait, Mantu K.; Clavel, Michael B.; Saluru, Sarat K.; Liu, Jheng-Sin; Meeker, Michael A.; Khodaparast, Giti A.; Bodnar, Robert J. (American Institute of Physics, 2018-11-15)The impact of bulk and surface defect states on the vibrational and optical properties of step-graded epitaxial GaAs₁₋ySby (0 ≤ y ≤ 1) materials with and without chemical surface treatment by (NH₄)₂S was investigated. Tunable antimony (Sb) composition GaAs₁₋ySby epitaxial layers, grown by solid source molecular beam epitaxy (MBE), were realized on GaAs and Si substrates by varying key growth parameters (e.g., Sb/Ga flux ratio, growth temperature). Raman and photoluminescence (PL) spectroscopic analysis of (NH₄)₂S-treated GaAs₁₋ySby epitaxial layers revealed composition-independent Raman spectral widths and enhanced PL intensity (1.3x) following (NH₄)₂S surface treatment, indicating bulk defect-minimal epitaxy and a reduction in the surface recombination velocity corresponding to reduced surface defect sites, respectively. Moreover, quantification of the luminescence recombination mechanisms across a range of measurement temperatures and excitation intensities (i.e., varying laser power) indicate the presence of free-electron to neutral acceptor pair or Sb-defect-related recombination pathways, with detectable bulk defect recombination discernible only in binary GaSb PL spectra. In addition, PL analysis of the short- and long-term thermodynamic stability of sulfur-treated GaAs₁₋ySby/Al₂O₃ heterointerfaces revealed an absence of quantifiable atomic interdiffusion or native oxide formation. Leveraging the combined Raman and PL analysis herein, the quality of the heteroepitaxial step-graded epitaxial GaAs₁₋ySby materials can be optimized for optical devices.
- Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variationGarbrecht, Magnus; Hultman, Lars; Fawey, Mohammed H.; Sands, Timothy D.; Saha, Bivas (Springer, 2017-11-28)Alternative designs of plasmonic metamaterials for applications in solar energy-harvesting devices are necessary due to pure noble metal-based nanostructures’ incompatibility with CMOS technology, limited thermal and chemical stability, and high losses in the visible spectrum. In the present study, we demonstrate the design of a material based on a multilayer architecture with systematically varying dielectric interlayer thicknesses that result in a continuous shift of surface plasmon energy. Plasmon resonance characteristics of metal/semiconductor TiN/(Al,Sc)N multilayer thin films with constant TiN and increasing (Al,Sc)N interlayer thicknesses were analyzed using aberration-corrected and monochromated scanning transmission electron microscopy-based electron energy loss spectroscopy (EELS). EEL spectrum images and line scans were systematically taken across layer interfaces and compared to spectra from the centers of the respective adjacent TiN layer. While a constant value for the TiN bulk plasmon resonance of about 2.50 eV was found, the surface plasmon resonance energy was detected to continuously decrease with increasing (Al,Sc)N interlayer thickness until 2.16 eV is reached. This effect can be understood to be the result of resonant coupling between the TiN bulk and surface plasmons across the dielectric interlayers at very low (Al,Sc)N thicknesses. That energy interval between bulk and decreasing surface plasmon resonances corresponds to wavelengths in the visible spectrum. This shows the potential of tailoring the material’s plasmonic response by controlling the (Al,Sc)N interlayer thickness, making TiN-based multilayers good prospects for plasmonic metamaterials in energy devices.