Strategic Growth Area: Economical and Sustainable Materials (ESM)
Permanent URI for this collection
Browse
Browsing Strategic Growth Area: Economical and Sustainable Materials (ESM) by Department "Materials Science and Engineering"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Dual-phase self-biased magnetoelectric energy harvesterZhou, Yuan; Apo, Daniel J.; Priya, Shashank (AIP Publishing, 2013-11-01)We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient similar to 50 V/cm Oe and power density similar to 4.5 mW/cm(3) (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system. (C) 2013 AIP Publishing LLC.
- Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxyHudait, Mantu K.; Zhu, Y.; Maurya, Deepam; Priya, Shashank (AIP Publishing, 2013-03-01)The band alignment properties of atomic layer HfO2 film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO2 film. The measured valence band offset value of HfO2 relative to (110)Ge was 2.28 +/- 0.05 eV. The extracted conduction band offset value was 2.66 +/- 0.1 eV using the bandgaps of HfO2 of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO2/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794838]
- Influence of nucleobase stoichiometry on the self-assembly of ABC triblock copolymersZhang, Keren; Talley, Samantha J.; Yu, Ya Peng; Moore, Robert Bowen; Murayama, Mitsuhiro; Long, Timothy E. (Royal Society of Chemistry, 2016-05-11)ABC triblock copolymers bearing adenine- and thymine-functionalized external blocks self-assembled into long-range, ordered lamellar microphase-separated morphologies on non-patterned substrates. Intermolecular hydrogen bonding formed thymine–adenine triplets and promoted self-assembly into well-defined lamellae consisting of poly(n-butyl acrylate) soft domains and complementary nucleobase hard domains, while thymine–adenine duplets contributed to superior mechanical properties.
- Magnetoelectric Interactions in Lead-Based and Lead-Free CompositesBichurin, Mirza I.; Petrov, Vladimir M.; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su-Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank (MDPI, 2011-04-06)Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.
- Micro/Nanofabrication and Characterization of Advanced Materials and DevicesLi, Yanxi; He, Liang; Yan, Mengyu; Wang, Zhengjun (2019-09-02)
- Multimodal system for harvesting magnetic and mechanical energyDong, Shuxiang; Zhai, Junyi; Li, Jiefang; Viehland, Dwight D.; Priya, Shashank (AIP Publishing, 2008-09-01)In this letter, we investigate a multimodal system for simultaneous energy harvesting from stray magnetic and mechanical energies by combining magnetoelectric and piezoelectric effects. The system consists of a cantilever beam with tip mass and a magnetoelectric laminate attached in the center of the beam. At 2 Oe magnetic field and mechanical vibration amplitude of 50mg, both at frequency of 20 Hz, the system was found to generate open circuit output voltage of 8 V(P.P.). An equivalent circuit model is proposed that predicts a summation effect for both mechanical and magnetic energies. (c) 2008 American Institute of Physics.
- Network structure and thermal stability study of high temperature seal glassLu, Kathy; Mahapatra, Manoj K. (American Institute of Physics, 2008-10-01)High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 degrees C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 degrees C. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2979323]
- Oxone®-Mediated TEMPO-Oxidized Cellulose Nanomaterials form I and form IIMoore, John P. II; Dachavaram, Soma Shekar; Bommagani, Shobanbabu; Penthala, Narsimha Reddy; Venkatraman, Priya; Foster, Earl Johan; Crooks, Peter A.; Hestekin, Jamie A. (MDPI, 2020-04-17)The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64–68% and crystallite sizes of 1.4–3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26–47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.
- Progress in Dual (Piezoelectric-Magnetostrictive) Phase Magnetoelectric Sintered CompositesIslam, Rashed Adnan; Priya, Shashank (Hindawi, 2012-04-04)The primary aims of this review article are (a) to develop the fundamental understanding of ME behavior in perovskite piezoelectric-spinel magnetostrictive composite systems, (b) to identify the role of composition, microstructural variables, phase transformations, composite geometry, and postsintering heat treatment on ME coefficient, and (c) to synthesize, characterize, and utilize the high ME coefficient composite. The desired range of ME coefficient in the sintered composite is 0.5–1 V/cm⋅Oe. The studies showed that the soft piezoelectric phase quantified by smaller elastic modulus, large grain size of piezoelectric phase (~1 μm), and layered structures yields higher magnitude of ME coefficient. It is also found that postsintering thermal treatment such as annealing and aging alters the magnitude of magnetization providing an increase in the magnitude of ME coefficient. A trilayer composite was synthesized using pressure-assisted sintering with soft phase [0.9 PZT–0.1 PZN] having grain size larger than 1 μm and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494 mV/cm⋅Oe after sintering and annealing, respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525 mV/cm⋅Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782 mV/cm⋅Oe. Piezoelectric grain texturing and nanoparticulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm⋅Oe, respectively. Nanoparticulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry, and properties is presented which will lead to development of high-performance magnetoelectric materials.
- Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variationGarbrecht, Magnus; Hultman, Lars; Fawey, Mohammed H.; Sands, Timothy D.; Saha, Bivas (Springer, 2017-11-28)Alternative designs of plasmonic metamaterials for applications in solar energy-harvesting devices are necessary due to pure noble metal-based nanostructures’ incompatibility with CMOS technology, limited thermal and chemical stability, and high losses in the visible spectrum. In the present study, we demonstrate the design of a material based on a multilayer architecture with systematically varying dielectric interlayer thicknesses that result in a continuous shift of surface plasmon energy. Plasmon resonance characteristics of metal/semiconductor TiN/(Al,Sc)N multilayer thin films with constant TiN and increasing (Al,Sc)N interlayer thicknesses were analyzed using aberration-corrected and monochromated scanning transmission electron microscopy-based electron energy loss spectroscopy (EELS). EEL spectrum images and line scans were systematically taken across layer interfaces and compared to spectra from the centers of the respective adjacent TiN layer. While a constant value for the TiN bulk plasmon resonance of about 2.50 eV was found, the surface plasmon resonance energy was detected to continuously decrease with increasing (Al,Sc)N interlayer thickness until 2.16 eV is reached. This effect can be understood to be the result of resonant coupling between the TiN bulk and surface plasmons across the dielectric interlayers at very low (Al,Sc)N thicknesses. That energy interval between bulk and decreasing surface plasmon resonances corresponds to wavelengths in the visible spectrum. This shows the potential of tailoring the material’s plasmonic response by controlling the (Al,Sc)N interlayer thickness, making TiN-based multilayers good prospects for plasmonic metamaterials in energy devices.
- Thermal stability and electrical conductivity of carbon-enriched silicon oxycarbideLu, Kathy; Erb, Donald; Liu, Mengying (Royal Society of Chemistry, 2016-01-28)Silicon oxycarbide (SiOC) is an interesting polymer-derived system that can be tailored to embody many different properties such as lightweight, electrochemical activity, and high temperature stability. One intriguing property that has not been fully explored is the electrical conductivity for the carbon-rich SiOC compositions. In this study, a carbon-rich SiOC system is created based on the crosslinking and pyrolysis of polyhydromethylsiloxane (PHMS) and divinylbenzene (DVB) mixed precursors. The carbon-rich nature can effectively delay SiOC phase separation and crystallization into SiO2 and SiC during pyrolysis. In an oxidizing air atmosphere, the SiOC materials are stable up to 1000 °C with <0.5 wt% weight loss. Before the onset of electrical conductivity drop at ∼400 °C, the material has electrical conductivity as high as 4.28 S cm−1. In an inert argon atmosphere, the conductivity is as high as 4.64 S cm−1. This new semi-conducting behavior with high thermal stability presents promising application potential for high temperature MEMS devices, protective coatings, and bulk semi-conducting components that must endure high temperature conditions.
- Waste not want not: life cycle implications of gold recovery and recycling from nanowastePati, Paramjeet; McGinnis, Sean; Vikesland, Peter J. (Royal Society of Chemistry, 2016-08-24)Commercial-scale applications of nanotechnology are rapidly increasing. Enhanced production of nanomaterials and nano-enabled products and their resultant disposal lead to concomitant increases in the volume of nanomaterial wastes (i.e., nanowaste). Many nanotechnologies employ resource-limited materials, such as precious metals and rare earth elements that ultimately end up as nanowaste. To make nanotechnology more sustainable it is essential to develop strategies to recover these high-value, resource-limited materials. To address this complex issue, we developed laboratory-scale methods to recover nanowaste gold. To this end, α-cyclodextrin facilitated host–guest inclusion complex formation involving second-sphere coordination of [AuBr4]− and [K(OH2)6]+ was used for gold recovery and the recovered gold was then used to produce new nanoparticles. To quantify the environmental impacts of this gold recycling process we then produced life cycle assessments to compare nanoparticulate gold production scenarios with and without recycling. The LCA results indicate that recovery and recycling of nanowaste gold can significantly reduce the environmental impacts of gold nanoparticle synthesis.