Department of Human Nutrition, Foods, and Exercise
Permanent URI for this community
Browse
Browsing Department of Human Nutrition, Foods, and Exercise by Subject "0601 Biochemistry and Cell Biology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- JNK and cardiometabolic dysfunctionCraige, Siobhan M.; Chen, Kai; Blanton, Robert M.; Keaney, John F.; Kant, Shashi (Portland Press, 2019-07-19)Cardiometabolic syndrome (CMS) describes the cluster of metabolic and cardiovascular diseases that are generally characterized by impaired glucose tolerance, intra-abdominal adiposity, dyslipidemia, and hypertension. CMS currently affects more than 25% of the world's population and the rates of diseases are rapidly rising. These CMS conditions represent critical risk factors for cardiovascular diseases including atherosclerosis, heart failure, myocardial infarction, and peripheral artery disease (PAD). Therefore, it is imperative to elucidate the underlying signaling involved in disease onset and progression. The c-Jun N-terminal Kinases (JNKs) are a family of stress signaling kinases that have been recently indicated in CMS. The purpose of this review is to examine the in vivo implications of JNK as a potential therapeutic target for CMS. As the constellation of diseases associated with CMS are complex and involve multiple tissues and environmental triggers, carefully examining what is known about the JNK pathway will be important for specificity in treatment strategies.
- Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivityShi, Hao; Munk, Alexander; Nielsen, Thomas S.; Daughtry, Morgan R.; Larsson, Louise; Li, Shize; Hoyer, Kasper F.; Geisler, Hannah W.; Sulek, Karolina; Kjobsted, Rasmus; Fisher, Taylor; Andersen, Marianne M.; Shen, Zhengxing; Hansen, Ulrik K.; England, Eric M.; Cheng, Zhiyong; Hojlund, Kurt; Wojtaszewski, Jorgen FP P.; Yang, Xiaoyong; Hulver, Matthew W.; Helm, Richard F.; Treebak, Jonas T.; Gerrard, David E. (Elsevier, 2018-05-01)Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders.