Scholarly Works, Fish and Wildlife Conservation
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Fish and Wildlife Conservation by Subject "05 Environmental Sciences"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Are Road Crossings Fragmenting Populations of Clinch Dace?Bourquin, Rebecca M.; Orth, Donald J.; Hallerman, Eric M.; Stauffer, Dean F. (Humboldt Field Research Institute, 2020-11-16)Chrosomus sp. cf. saylori (Clinch Dace) is a newly recognized species of minnow with a restricted distribution in southwestern Virginia. We analyzed genetic variation and abundance at paired sites above and below road crossings. Road crossings did not have a strong effect on presence, abundance, or genetic differentiation of Clinch Dace. Of all sites where Clinch Dace were found, only 1 perched culvert presented a barrier to upstream migration; however, no genetic differentiation was found between collections above and below that or any other culvert. Distribution and abundance of Clinch Dace populations were not influenced by habitat variables measured at the site level. Low abundance in small headwaters, nest association, and high mobility appear to be characteristics of this species of Chrosomus.
- Contrasting long-term population trends of beach-nesting shorebirds under shared environmental pressuresKwon, Eunbi; Robinson, Samantha G.; Weithman, Chelsea E.; Catlin, Daniel H.; Karpanty, Sarah M.; Altman, Jon; Simons, Theodore R.; Fraser, James D. (Elsevier, 2021-08-01)Identifying the drivers of long-term population change is a key goal of ecological studies. It is complicated by extrinsic and intrinsic factors that may covary with time and/or operate on a time lag. For migratory shorebirds that breed on the barrier islands of eastern North America, populations may be limited by the anthropogenic, climatic, biological environments they encounter throughout the annual cycle. Using three-decades (1989–2017) of breeding monitoring data collected by the National Park Service at two national seashores in North Carolina (Hatteras and Lookout), we examined the potential drivers of nesting piping plover (Charadrius melodus) and American oystercatcher (Haematopus palliates) populations. Hatteras had five times more annual visitors than Lookout, and our modelling revealed a strong negative relationship between the population size of breeding plovers and human activity and a positive relationship with protection efforts aimed at reducing disturbance. Breeding and wintering climatic conditions, population productivity, and nesting habitat availability showed only weak effects. Thus, a decade-long decline in plover numbers at both seashores starting in the mid-90s reversed as the parks' visitor counts decreased and stricter protections from potential disturbance were implemented. However, the two sympatric populations of oystercatchers showed the opposite population trends from each other at the neighboring seashores, increasing only on Lookout after a hurricane improved habitat and subsequently the reproductive output. Our study suggests a strong relationship between the anthropogenic environment and the population trend of a threatened species and, simultaneously, the important role of stochastic events in shaping populations of long-lived shorebird species.
- Impacts of rural to urban migration, urbanization, and generational change on consumption of wild animals in the AmazonChaves, Willandia A.; Valle, Denis; Tavares, Aline S.; Morcatty, Thais Q.; Wilcove, David S. (Wiley, 2020-10-30)For the first time in history, more people live in urban areas than in rural areas. This trend is likely to continue, driven largely by rural-urban migration. We investigated how rural-urban migration, combined with urbanization and generational change, affects consumption of wild animals, using one of the most hunted taxa in the Amazon: chelonians (tortoises and freshwater turtles). We surveyed 1,356 households and 2,776 schoolchildren across 10 urban areas of the Brazilian Amazon (six small towns, three large towns, and Manaus, the largest city in the Amazon Basin), using a Randomized Response Technique and anonymous questionnaires. Urban demand for wildmeat (i.e., meat from wildlife) was alarmingly high, with conservative estimates of approximately 1.7 million turtles and tortoises being consumed annually in Amazonas state. However, consumption rates declined with urban area size and between generations (adults versus children). Furthermore, the longer rural-urban migrants lived in urban areas, the lower their consumption rates were. These results suggest that wildlife consumption is a rural-related tradition that decreases with urbanization and over time after people move to urban areas. Current conservation efforts in the Amazon do not address urban demand for wildlife and may be insufficient to ensure the survival of traded species in the face of urbanization and human population growth. Our findings show that conservation interventions must target the urban demand for wildlife, especially by focusing on young people and recent rural-urban migrants.
- The Influence of Forests on Freshwater Fish in the Tropics: A Systematic ReviewLo, Michaela; Reed, James R.; Castello, Leandro; Steel, E. Ashley; Frimpong, Emmanuel A.; Ickowitz, Amy (Oxford University Press, 2020-05-01)Tropical forests influence freshwater fish through multiple pathways, only some of which are well documented. We systematically reviewed the literature to assess the current state of knowledge on forests and freshwater fish in the tropics. The existing evidence is mostly concentrated in the neotropics. The majority of studies provided evidence that fish diversity was higher where there was more forest cover; this was related to the greater heterogeneity of resources in forested environments that could support a wider range of species. Studies quantifying fish abundance (or biomass) showed mixed relationships with forest cover, depending on species-specific habitat preferences. We identify the key challenges limiting our current understanding of the forest-fish nexus and provide recommendations for future research to address these knowledge gaps. A clear understanding of the functional pathways in forest-freshwater ecosystems can improve evidence-based policy development concerned with deforestation, biodiversity conservation, and food insecurity in the tropics.
- Macroinvertebrate sensitivity thresholds for sediment in Virginia streamsGovenor, Heather; Krometis, Leigh-Anne H.; Willis, Lawrence; Angermeier, Paul L.; Hession, W. Cully (2019-01)Sediment is the most commonly identified pollutant associated with macroinvertebrate community impairments in freshwater streams nationwide. Management of this physical stressor is complicated by the multiple measures of sediment available (e.g., suspended, dissolved, bedded) and the variability in natural "healthy" sediment loadings across ecoregions. Here we examine the relative importance of 9 sediment parameters on macroinvertebrate community health as measured by the Virginia Stream Condition Index (VSCI) across 5 ecoregions. In combination, sediment parameters explained 27.4% of variance in the VSCI in a multiregion data set and from 20.2% to 76.4% of variance for individual ecoregions. Bedded sediment parameters had a stronger influence on VSCI than did dissolved or suspended parameters in the multiregion assessment. However, assessments of individual ecoregions revealed conductivity had a key influence on VSCI in the Central Appalachian, Northern Piedmont and Piedmont ecoregions. In no case was a single sediment parameter sufficient to predict VSCI scores or individual biological metrics. Given the identification of embeddedness and conductivity as key parameters for predicting biological condition, we developed family-level sensitivity thresholds for these parameters, based on extirpation. Resulting thresholds for embeddedness were 68% for combined ecoregions, 65% for the Mountain bioregion (composed of Central Appalachian, Ridge and Valley, and Blue Ridge ecoregions), and 88% for the Piedmont bioregion (composed of Northern Piedmont and Piedmont ecoregions). Thresholds for conductivity were 366 μS/cm for combined ecoregions, 391 μS/cm for the Mountain bioregion, and 136 μS/cm for the Piedmont bioregion. These thresholds may help water quality professionals identify impaired and at-risk waters designated to support aquatic life and develop regional strategies to manage sediment-impaired streams. Inclusion of embeddedness as a restoration endpoint may be warranted; this could be facilitated by application of more quantitative, less time-intensive measurement approaches. We encourage refinement of thresholds as additional data and genus-based metrics become available. Integr Environ Assess Manag 2019;15:77-92. Published 2018. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
- Testing a global standard for quantifying species recovery and assessing conservation impactGrace, Molly K.; Akcakaya, H. Resit; Bennett, Elizabeth L.; Brooks, Thomas M.; Heath, Anna; Hedges, Simon; Hilton-Taylor, Craig; Hoffmann, Michael; Hochkirch, Axel; Jenkins, Richard; Keith, David A.; Long, Barney; Mallon, David P.; Meijaard, Erik; Milner-Gulland, E. J.; Paul Rodriguez, Jon; Stephenson, P. J.; Stuart, Simon N.; Young, Richard P.; Acebes, Pablo; Alfaro-Shigueto, Joanna; Alvarez-Clare, Silvia; Andriantsimanarilafy, Raphali Rodlis; Arbetman, Marina; Azat, Claudio; Bacchetta, Gianluigi; Badola, Ruchi; Barcelos, Luis MD D.; Barreiros, Joao Pedro; Basak, Sayanti; Berger, Danielle J.; Bhattacharyya, Sabuj; Bino, Gilad; Borges, Paulo A.; Boughton, Raoul K.; Brockmann, H. Jane; Buckley, Hannah L.; Burfield, Ian J.; Burton, James; Camacho-Badani, Teresa; Santiago Cano-Alonso, Luis; Carmichael, Ruth H.; Carrero, Christina; P Carroll, John; Catsadorakis, Giorgos; Chapple, David G.; Chapron, Guillaume; Chowdhury, Gawsia Wahidunnessa; Claassens, Louw; Cogoni, Donatella; Constantine, Rochelle; Craig, Christie Anne; Cunningham, Andrew A.; Dahal, Nishma; Daltry, Jennifer C.; Das, Goura Chandra; Dasgupta, Niladri; Davey, Alexandra; Davies, Katharine; Develey, Pedro; Elangovan, Vanitha; Fairclough, David; Di Febbraro, Mirko; Fenu, Giuseppe; Fernandes, Fernando Moreira; Fernandez, Eduardo Pinheiro; Finucci, Brittany; Foldesi, Rita; Foley, Catherine M.; Ford, Matthew; Forstner, Michael RJ J.; Garcia, Nestor; Garcia-Sandoval, Ricardo; Gardner, Penny C.; Garibay-Orijel, Roberto; Gatan-Balbas, Marites; Gauto, Irene; Ghazi, Mirza Ghazanfar Ullah; Godfrey, Stephanie S.; Gollock, Matthew; Gonzalez, Benito A.; Grant, Tandora D.; Gray, Thomas; Gregory, Andrew J.; van Grunsven, Roy HA A.; Gryzenhout, Marieka; Guernsey, Noelle C.; Gupta, Garima; Hagen, Christian A.; Hagen, Christian A.; Hall, Madison B.; Hallerman, Eric M.; Hare, Kelly; Hart, Tom; Hartdegen, Ruston; Harvey-Brown, Yvette; Hatfield, Richard; Hawke, Tahneal; Hermes, Claudia; Hitchmough, Rod; Hoffmann, Pablo Melo; Howarth, Charlie; Hudson, Michael A.; Hussain, Syed Ainul; Huveneers, Charlie; Jacques, Helene; Jorgensen, Dennis; Katdare, Suyash; Katsis, Lydia KD D.; Kaul, Rahul; Kaunda-Arara, Boaz; Keith-Diagne, Lucy; Kraus, Daniel T.; de Lima, Thales Moreira; Lindeman, Ken; Linsky, Jean; Louis, Edward; Loy, Anna; Lughadha, Eimear Nic; Mangel, Jeffrey C.; Marinari, Paul E.; Martin, Gabriel M.; Martinelli, Gustavo; McGowan, Philip JK K.; McInnes, Alistair; Mendes, Eduardo Teles Barbosa; Millard, Michael J.; Mirande, Claire; Money, Daniel; Monks, Joanne M.; Laura Morales, Carolina; Mumu, Nazia Naoreen; Negrao, Raquel; Anh, Ha Nguyen; Niloy, Md Nazmul Hasan; Norbury, Grant Leslie; Nordmeyer, Cale; Norris, Darren; O'Brien, Mark; Oda, Gabriela Akemi; Orsenigo, Simone; Outerbridge, Mark Evan; Pasachnik, Stesha; Perez-Jimenez, Juan Carlos; Pike, Charlotte; Pilkington, Fred; Plumb, Glenn; Portela, Rita de Cassia Quitete D. C. Q.; Prohaska, Ana; Quintana, Manuel G.; Rakotondrasoa, Eddie Fanantenana; Ranglack, Dustin H.; Rankou, Hassan; Rawat, Ajay Prakash; Reardon, James Thomas; Rheingantz, Marcelo Lopes; Richter, Stephen C.; Rivers, Malin C.; Rogers, Luke Rollie; da Rosa, Patricia; Rose, Paul; Royer, Emily; Ryan, Catherine; de Mitcheson, Yvonne J. Sadovy; Salmon, Lily; Salvador, Carlos Henrique; Samways, Michael J.; Sanjuan, Tatiana; Dos Santos, Amanda Souza; Sasaki, Hiroshi; Schutz, Emmanuel; Scott, Heather Ann; Scott, Robert Michael; Serena, Fabrizio; Sharma, Surya P.; Shuey, John A.; Silva, Carlos Julio Polo; Simaika, John P.; Smith, David R.; Spaet, Julia LY Y.; Sultana, Shanjida; Talukdar, Bibhab Kumar; Tatayah, Vikash; Thomas, Philip; Tringali, Angela; Hoang, Trinh-Dinh; Tuboi, Chongpi; Usmani, Aftab Alam; Vasco-Palacios, Aida M.; Vie, Jean-Christophe; Virens, Jo; Walker, Alan; Wallace, Bryan; Waller, Lauren J.; Wang, Hongfeng; Wearn, Oliver R.; van Weerd, Merlijn; Weigmann, Simon; Willcox, Daniel; Woinarski, John; Yong, Jean WH H.; Young, Stuart (Wiley, 2021-07-21)Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.