Center for Intelligent Material Systems and Structures (CIMSS)
Permanent URI for this community
Browse
Browsing Center for Intelligent Material Systems and Structures (CIMSS) by Subject "Ceramics"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Electromechanical behavior of 001 -textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 ceramicsYan, Yongke; Wang, Yu. U.; Priya, Shashank (AIP Publishing, 2012-05-01)[001]-textured Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d(33) = 1000 pC/N, d(31) = 371 pC/N, epsilon(r) 2591, and tan delta = similar to 0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712563]
- Giant self-biased magnetoelectric coupling in co-fired textured layered compositesYan, Yongke; Zhou, Yuan; Priya, Shashank (AIP Publishing, 2013-02-01)Co-fired magnetostrictive/piezoelectric/magnetostrictive laminate structure with silver inner electrode was synthesized and characterized. We demonstrate integration of textured piezoelectric microstructure with the cost-effective low-temperature co-fired layered structure to achieve strong magnetoelectric coupling. Using the co-fired composite, a strategy was developed based upon the hysteretic response of nickel-copper-zinc ferrite magnetostrictive materials to achieve peak magnetoelectric response at zero DC bias, referred as self-biased magnetoelectric response. Fundamental understanding of self-bias phenomenon in composites with single phase magnetic material was investigated by quantifying the magnetization and piezomagnetic changes with applied DC field. We delineate the contribution arising from the interfacial strain and inherent magnetic hysteretic behavior of copper modified nickel-zinc ferrite towards self-bias response. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791685]
- Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramicsYan, Yongke; Cho, Kyung-Hoon; Priya, Shashank (AIP Publishing, 2012-03-01)In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k(31)) of T-5BT ceramic started to degrade from 75 degrees C while the random counterpart showed a very stable tendency up to 180 degrees C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol.% BT and subsequently poled at 140 degrees C (T-3BT140) exhibited very stable and high k(31) (>0.53) in a wide temperature range from room temperature to 130 degrees C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d(33) = 720 pC/N, k(31) = 0.53, Q(m) = 403, delta = 0.3% which are very promising for high power and magnetoelectric applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698157]