Scholarly Works, Aerospace and Ocean Engineering
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Aerospace and Ocean Engineering by Subject "Actins"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Quantitative Biophysical Metrics for Rapid Evaluation of Ovarian Cancer Metastatic PotentialMukherjee, Apratim; Zhang, Haonan; Ladner, Katherine; Brown, Megan; Urbanski, Jacob; Grieco, Joseph P.; Kapania, Rakesh K.; Lou, Emil; Behkam, Bahareh; Schmelz, Eva M.; Nain, Amrinder S. (American Society for Cell Biology, 2022-05-15)Ovarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous sub-mesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here, we fabricated extracellular-matrix mimicking suspended fiber networks: crosshatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying inter-fiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease, while force-disease biphasic relationship exhibited f-actin stress-fiber network dependence. However, unique to suspended fibers, coiling occurring at tips of protrusions and not the length or breadth of protrusions displayed strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on time scale of hours.