Department of Human Development and Family Science
Permanent URI for this community
Browse
Browsing Department of Human Development and Family Science by Subject "1109 Neurosciences"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studiesKorom, Marta; Camacho, M. Catalina; Filippi, Courtney A.; Licandro, Roxane; Moore, Lucille A.; Dufford, Alexander; Zöllei, Lilla; Graham, Alice M.; Spann, Marisa; Howell, Brittany R.; Shultz, Sarah; Scheinost, Dustin (Elsevier, 2022-02-01)The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
- Early influences of microbiota on white matter development in germ-free pigletsAhmed, Sadia; Travis, Sierrah; Díaz-Bahamonde, Francisca; Porter, Demisha; Henry, Sara; Ravipati, Aditya; Booker, Aryn; Ding, Hanzhang; Ju, Jing; Ramesh, Ashwin; Pickrell, Alicia M.; Wang, Maosen; LaConte, Stephen M.; Howell, Brittany R.; Yuan, Lijuan; Morton, Paul D. (Frontiers, 2021-12-27)Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.
- Post-training stimulation of the right dorsolateral prefrontal cortex impairs working memory training performanceAu, Jacky; Katz, Benjamin; Moon, Austin; Talati, Sheebani; Abagis, Tessa R.; Jonides, John; Jaeggi, Susanne M. (Wiley, 2021-10)Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long-term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.