Scholarly Works, Institute for Critical Technology and Applied Science (ICTAS)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Institute for Critical Technology and Applied Science (ICTAS) by Subject "Animals"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella modelRanjan, Ashish; Pothayee, Nikorn; Seleem, Mohamed N.; Tyler, Ronald D.; Brenseke, Bonnie; Sriranganathan, Nammalwar; Riffle, Judy S.; Kasimanickam, Ramanathan K. (Dove Medical Press, 2009-01-01)Pluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA(+/-)Na-b-(PEO-b-PPO-b-PEO)-b-PAA(+/-)Na) were blended with PAA(-) Na(+) and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of -0.7 (+/-0.2), and incorporated approximately 20% by weight of gentamicin. Nanostructures upon co-incubation with J774A.1 macrophage cells showed no adverse toxicity in vitro. Nanostructures administered in vivo either at multiple dosage of 5 microg g(-1) or single dosage of 15 microg g(-1) in AJ-646 mice infected with Salmonella resulted in significant reduction of viable bacteria in the liver and spleen. Histopathological evaluation for concentration-dependent toxicity at a dosage of 15 microg g(-1) revealed mineralized deposits in 50% kidney tissues of free gentamicin-treated mice which in contrast was absent in nanostructure-treated mice. Thus, encapsulation of gentamicin in nanostructures may reduce toxicity and improve in vivo bacterial clearance.
- Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burningYang, Yi; Chen, Bo; Hower, James C.; Schindler, Michael; Winkler, Christopher; Brandt, Jessica E.; Di Giulio, Richard T.; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yu-ru; Priya, Shashank; Hochella, Michael F. Jr. (Nature Publishing Group, 2017-01-12)Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magneli phases (Ti; x; O2x–1 with 4 ≤ x ≤ 9) from TiO2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magneli phases have potential toxicity pathways that are not photoactive like TiO2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung. Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.
- High intensity focused ultrasound for the treatment of solid tumors: a pilot study in canine cancer patientsCarroll, Jennifer; Coutermarsh-Ott, Sheryl; Klahn, Shawna L.; Tuohy, Joanne L.; Barry, Sabrina L.; Allen, Irving C.; Hay, Alayna N.; Ruth, Jeffrey; Dervisis, Nikolaos G. (Taylor & Francis, 2022-01)Purpose: To investigate the safety, feasibility, and outcomes of High-Intensity Focused Ultrasound (HIFU) for the treatment of solid tumors in a spontaneous canine cancer model. Methods: Dogs diagnosed with subcutaneous solid tumors were recruited, staged and pretreatment biopsies were obtained. A single HIFU treatment was delivered to result in partial tumor ablation using a commercially available HIFU unit. Tumors were resected 3-6 days post HIFU and samples obtained for histopathology and immunohistochemistry. Total RNA was isolated from paired pre and post treated FFPE tumor samples, and quantitative gene expression analysis was performed using the nCounter Canine IO Panel. Results: A total of 20 dogs diagnosed with solid tumors were recruited and treated in the study. Tumors treated included Soft Tissue Sarcoma (n = 15), Mast Cell Tumor (n = 3), Osteosarcoma (n = 1), and Thyroid Carcinoma (n = 1). HIFU was well tolerated with only 1 dog experiencing a clinically significant adverse event. Pathology confirmed the presence of complete tissue ablation at the HIFU targeted site and immunohistochemistry indicated immune cell infiltration at the treated/untreated tumor border. Quantitative gene expression analysis indicated that 28 genes associated with T-cell activation were differentially expressed post-HIFU. Conclusions: HIFU appears to be safe and feasible for the treatment of subcutaneous canine solid tumors, resulting in ablation of the targeted tissue. HIFU induced immunostimulatory changes, highlighting the canine cancer patient as an attractive model for studying the effects of focal ablation therapies on the tumor microenvironment.
- Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A ReviewHendricks-Wenger, Alissa; Arnold, Lauren; Gannon, Jessica; Simon, Alex; Singh, Neha; Sheppard, Hannah; Nagai-Singer, Margaret A.; Imran, Khan Mohammed; Lee, Kiho; Clark-Deener, Sherrie; Byron, Christopher R.; Edwards, Michael R.; Larson, Martha M.; Rossmeisl, John H. Jr.; Coutermarsh-Ott, Sheryl; Eden, Kristin; Dervisis, Nikolaos G.; Klahn, Shawna L.; Tuohy, Joanne L.; Allen, Irving C.; Vlaisavljevich, Eli (IEEE, 2021-09-03)New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.