Scholarly Works, Center for Space Science and Engineering Research (Space@VT)
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Center for Space Science and Engineering Research (Space@VT) by Subject "air quality"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Can Column Formaldehyde Observations Inform Air Quality Monitoring Strategies for Ozone and Related Photochemical Oxidants?Travis, K. R.; Judd, L. M.; Crawford, J. H.; Chen, Gao; Szykman, James; Whitehill, Andrew; Valin, Lukas C.; Spinei, Elena; Janz, Scott; Nowlan, Caroline R.; Kwon, Hyeong-Ahn; Fried, Alan; Walega, James (American Geophysical Union, 2022-07-16)Formaldehyde column density (omega HCHO) showed a potentially useful correlation with surface ozone during the LISTOS campaign on Long Island Sound and the KORUS-AQ campaign in Seoul, South Korea. This builds on previous work that identified this relationship from in situ aircraft observations with similar findings for ground-based and airborne remote sensing of omega HCHO. In the Long Island Sound region, omega HCHO and surface ozone exhibited strong temporal (r(2) = 0.66) and spatial (r(2) = 0.73) correlation. The temporal variability in omega HCHO (similar to 1 Dobson units [DU]) was larger than the range in the spatial average (similar to 0.1 DU). The spatial average is most useful for informing ozone monitoring strategies, demonstrating the challenge in using omega HCHO satellite data sets for this purpose. In Seoul, high levels of NO2 resulted in O-x better correlating with omega HCHO than surface ozone due to titration effects. The omega HCHO-O-x relationship may therefore reflect the sum of surface ozone and related photochemical oxidants, relevant to air quality standards set to regulate this quantity such as the U.S. EPA National Ambient Air Quality Standard (NAAQS). The relationship of omega HCHO to O-x shifted in Seoul during the campaign demonstrating the need to evaluate this relationship over longer time periods. With sufficient precision in future satellite retrievals, omega HCHO observations could be useful for evaluating the adequacy of surface air quality monitoring strategies.