Fralin Life Sciences Institute
Permanent URI for this community
Note: In 2019, the Biocomplexity Institute became part of the Fralin Life Sciences Institute.
Browse
Browsing Fralin Life Sciences Institute by Subject "0103 Numerical and Computational Mathematics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Epigenetic regulation of neuronal cell specification inferred with single cell “Omics” dataYin, Liduo; Banerjee, Sharmi; Fan, Jiayi; He, Jianlin; Lu, Xuemei; Xie, Hehuang (Elsevier, 2020-01-01)The brain is a highly complex organ consisting of numerous types of cells with ample diversity at the epigenetic level to achieve distinct gene expression profiles. During neuronal cell specification, transcription factors (TFs) form regulatory modules with chromatin remodeling proteins to initiate the cascade of epigenetic changes. Currently, little is known about brain epigenetic regulatory modules and how they regulate gene expression in a cell-type specific manner. To infer TFs involved in neuronal specification, we applied a recursive motif search approach on the differentially methylated regions identified from single-cell methylomes. The epigenetic transcription regulatory modules (ETRM), including EGR1 and MEF2C, were predicted and the co-expression of TFs in ETRMs were examined with RNA-seq data from single or sorted brain cells using a conditional probability matrix. Lastly, computational predications were validated with EGR1 ChIP-seq data. In addition, methylome and RNA-seq data generated from Egr1 knockout mice supported the essential role of EGR1 in brain epigenome programming, in particular for excitatory neurons. In summary, we demonstrated that brain single cell methylome and RNA-seq data can be integrated to gain a better understanding of how ETRMs control cell specification. The analytical pipeline implemented in this study is freely accessible in the Github repository (https://github.com/Gavin-Yinld/brain_TF).
- Structural and molecular biology of hepatitis E virusWang, Bo; Meng, Xiang-Jin (Elsevier, 2021-01-01)Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis, mainly transmitted by fecal-oral route but has also been linked to fulminant hepatic failure, chronic hepatitis, and extrahepatic neurological and renal diseases. HEV is an emerging zoonotic pathogen with a broad host range, and strains of HEV from numerous animal species are known to cross species barriers and infect humans. HEV is a single-stranded, positive-sense RNA virus in the family Hepeviridae. The genome typically contains three open reading frames (ORFs): ORF1 encodes a nonstructural polyprotein for virus replication and transcription, ORF2 encodes the capsid protein that elicits neutralizing antibodies, and ORF3, which partially overlaps ORF2, encodes a multifunctional protein involved in virion morphogenesis and pathogenesis. HEV virions are non-enveloped spherical particles in feces but exist as quasi-enveloped particles in circulating blood. Two types of HEV virus-like particles (VLPs), small T = 1 (270 Å) and native virion-sized T = 3 (320–340 Å) have been reported. There exist two distinct forms of capsid protein, the secreted form (ORF2S) inhibits antibody neutralization, whereas the capsid-associated form (ORF2C) self-assembles to VLPs. Four cis-reactive elements (CREs) containing stem-loops from secondary RNA structures have been identified in the non-coding regions and are critical for virus replication. This mini-review discusses the current knowledge and gaps regarding the structural and molecular biology of HEV with emphasis on the virion structure, genomic organization, secondary RNA structures, viral proteins and their functions, and life cycle of HEV.