Department of Population Health Sciences
Permanent URI for this community
Browse
Browsing Department of Population Health Sciences by Subject "1002 Environmental Biotechnology"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- COVID-19 Reveals Vulnerabilities of the Food–Energy–Water Nexus to Viral PandemicsCalder, Ryan S. D.; Grady, Caitlin; Jeuland, Marc; Kirchhoff, Christine J.; Hale, Rebecca L.; Muenich, Rebecca L. (American Chemical Society, 2021)Food, energy, and water (FEW) sectors are inextricably linked, making one sector vulnerable to disruptions in another. Interactions between FEW systems, viral pandemics, and human health have not been widely studied. We mined scientific and news/media articles for causal relations among FEW and COVID-19 variables and qualitatively characterized system dynamics. Food systems promoted the emergence and spread of COVID-19, leading to illness and death. Major supply-side breakdowns were avoided (likely due to low morbidity/mortality among working-age people). However, COVID-19 and physical distancing disrupted labor and capital inputs and stressed supply chains, while creating economic insecurity among the already vulnerable poor. This led to demand-side FEW insecurities, in turn increasing susceptibility to COVID-19 among people with many comorbidities. COVID-19 revealed trade-offs such as allocation of water to hygiene versus to food production and disease burden avoided by physical distancing versus disease burden from increased FEW insecurities. News/media articles suggest great public interest in FEW insecurities triggered by COVID-19 interventions among individuals with low COVID-19 case-fatality rates. There is virtually no quantitative analysis of any of these trade-offs or feedbacks. Enhanced quantitative FEW and health models are urgently needed as future pandemics are likely and may have greater morbidity and mortality than COVID-19.