Grado Department of Industrial and Systems Engineering
Permanent URI for this community
Browse
Browsing Grado Department of Industrial and Systems Engineering by Subject "0802 Computation Theory and Mathematics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Effect of Context Switching, Focal Switching Distance, Binocular and Monocular Viewing, and Transient Focal Blur on Human Performance in Optical See-Through Augmented RealityArefin, Mohammed S.; Phillips, Nate; Plopski, Alexander; Gabbard, Joseph L.; Swan, J. Edward (IEEE, 2022-01-01)In optical see-through augmented reality (AR), information is often distributed between real and virtual contexts, and often appears at different distances from the user. To integrate information, users must repeatedly switch context and change focal distance. If the user’s task is conducted under time pressure, they may attempt to integrate information while their eye is still changing focal distance, a phenomenon we term transient focal blur. Previously, Gabbard, Mehra, and Swan (2018) examined these issues, using a text-based visual search task on a one-eye optical see-through AR display. This paper reports an experiment that partially replicates and extends this task on a custom-built AR Haploscope. The experiment examined the effects of context switching, focal switching distance, binocular and monocular viewing, and transient focal blur on task performance and eye fatigue. Context switching increased eye fatigue but did not decrease performance. Increasing focal switching distance increased eye fatigue and decreased performance. Monocular viewing also increased eye fatigue and decreased performance. The transient focal blur effect resulted in additional performance decrements, and is an addition to knowledge about AR user interface design issues.
- Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programsBansal, Manish; Zhang, Yingqiu (Springer, 2021-01-22)In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. We then introduce two-stage stochastic p-order conic mixed integer programs (denoted by TSS-CMIPs) in which the second stage problems have sum of lp-norms in the objective function along with integer variables. First, we present sufficient conditions under which the addition of scenario-based nonlinear cuts in the extensive formulation of TSS-CMIPs is sufficient to relax the integrality restrictions on the second stage integer variables without impacting the integrality of the optimal solution of the TSS-CMIP. We utilize scenario-based CMIR cuts for TSS-CMIPs and their distributionally robust generalizations with structured CMIPs in the second stage, and prove that these cuts provide conic/linear programming equivalent or approximation for the second stage CMIPs. We also perform extensive computational experiments by solving stochastic and distributionally robust capacitated facility location problem and randomly generated structured TSS-CMIPs with polyhedral CMIPs and second-order CMIPs in the second stage, i.e. p= 1 and p= 2 , respectively. We observe that there is a significant reduction in the total time taken to solve these problems after adding the scenario-based cuts.