Technical Reports (VTTI)
Permanent URI for this collection
Browse
Browsing Technical Reports (VTTI) by Subject "Aggregates"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Methods for Assessing the Polishing Characteristics of Coarse Aggregates for Use in Pavement Surface LayersWang, Linbing; Druta, Cristian; Lane, D. Stephen (Virginia Center for Transportation Innovation and Research, 2010-06-01)The predominant aggregate resources located in the western parts of Virginia are carbonate rocks. The mineral components of these rocks tend to be relatively soft and subject to abrasive wear under traffic that leads to a fairly rapid smoothing of the aggregate surface and the surface of pavements containing them. This smoothing or polishing leads to a loss of surface friction and thus skid resistance of the pavement, creating potential safety issues. As a consequence, surface courses of pavements are constructed with nonpolishing aggregates, which in the western districts can mean lengthy transport of materials. With rising economic and environmental costs associated with transportation, increasing the use of locally available materials through improved methods to discern subtle differences in polishing tendencies or blending of polishing with nonpolishing aggregates could translate into significant cost savings. In this study, a suite of carbonate aggregates suspected to show a range of polishing characteristics based on previous studies was selected for evaluation along with several sources currently used as nonpolishing aggregates. The aggregates were examined petrographically, and the carbonate sources were tested for insoluble residue and subjected to a dilute acid etch to form the basis for a tentative classification of polishing susceptibility. The aggregates were tested in the Micro-Deval apparatus using both the standard procedure for coarse aggregates and a cyclical A/P procedure with silica sand devised for this study to examine how the various aggregate types responded when subjected to various degrees of wearing under similar conditions. Following abrasion cycles, 2-D digital aggregate images were obtained and analyzed using specialized software to assess their morphological properties with emphasis on angularity and surface texture. These properties were assessed before and after abrasion to determine the degree and rate of change in surface texture as well as the texture distribution within an aggregate sample. In addition, pictures were taken of the exposed surfaces of three experimental pavement sections in the Virginia Department of Transportation's Bristol District containing carbonate rock as the fine aggregate blended with nonpolishing coarse aggregate to visually assess the effect of traffic in the last 3 years. The carbonate rocks evaluated could be grouped according to polishing and wear tendency based on petrographic characteristics and mass loss in the Micro-Deval tests. Although visual distinctions could be discerned, these differences were not identified statistically by the image analysis program, but factors affecting the program were identified. A second phase of work is proposed that focuses on developing an accelerated pavement wearing protocol for assessing polishing tendencies and evaluating various mixtures of carbonate and nonpolishing aggregates.
- Portable Image Analysis System for Characterizing Aggregate MorphologyWang, Linbing; Lane, D. Stephen; Lu, Yang; Druta, Cristian (Virginia Center for Transportation Innovation and Research, 2008-02-01)In the last decade, the application of image-based evaluation of particle shape, angularity and texture has been widely researched to characterize aggregate morphology. These efforts have been driven by the knowledge that the morphologic characteristics affect the properties and ultimate performance of aggregate mixtures in hot-mixed asphalt, hydraulic cement concrete and bound and unbound pavement layers, yet the lack of rapid, objective, and quantitative methods for assessment have inhibited their application in the engineering process. Developed systems for computer-based imaging and image analysis can cost up to $30-40,000 and are usually not portable to the field. However, recent advances in technology have produced pocket computers having as much processing power as was available in some desktop computers. This project takes advantage of these advances to develop an inexpensive portable image analysis system for characterizing aggregate morphology. The system was developed with an integral pocket computer-high resolution camera but can also use individual components consisting of a digital camera and lap- or desk-top computer. Digital images of aggregate particles are captured with the camera. These images are analyzed within the Matlab software program environment with a macro developed and written for this project that uses Fast Fourier Transform to characterize the particle morphology with respect to three parameters: shape, angularity and texture, based on the particle perimeter (outline or edge). By analyzing a number of particles from a source, it can be characterized with respect to these three parameters. Following development of the analysis program, 10 coarse aggregates from various Virginia sources were analyzed. Particles of each aggregate were randomly chosen so that each group contained the various shapes and textures representative of the source. Three images of each particle were obtained at distances of 2, 3, and 10 in to evaluate the resolution needed for adequate analysis. The reliability of the image processing was assessed by statistically analyzing the shape, angularity, and texture values to determine how the threshold parameter affects the particle edge acquisition. Asymptotic analysis was performed to determine the number of images needed to obtain a statistically stable value for each aggregate parameter. It was determined that images acquired at close range (2 or 3 in) were needed to provide sufficient resolution to adequately characterize the aggregate. It was also found that statistically valid values for aggregate shape, angularity, and texture can be obtained from fifteen particle images of random orientation. It can be concluded that the system can be successfully used to characterize coarse aggregate morphology. It is recommended that the Virginia Department of Transportation's Materials Division begin collecting images of aggregates used statewide and collaborate with the VTRC to perform the characterizations and build the database of aggregate morphologic characteristics. This information, coupled with performance testing of the materials, will provide the basis for incorporating the characterization parameters into specifications and guide material usage in the future.