Department of Small Animal Clinical Sciences
Permanent URI for this community
Browse
Browsing Department of Small Animal Clinical Sciences by Subject "Ablation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Histotripsy Ablation of Bone Tumors: Feasibility Study in Excised Canine Osteosarcoma TumorsArnold, Lauren; Hendricks-Wenger, Alissa; Coutermarsh-Ott, Sheryl; Gannon, Jessica; Hay, Alayna N.; Dervisis, Nikolaos G.; Klahn, Shawna L.; Allen, Irving C.; Tuohy, Joanne L.; Vlaisavljevich, Eli (Elsevier, 2021-12)Osteosarcoma (OS) is a primary bone tumor affecting both dogs and humans. Histotripsy is a non-thermal, non-invasive focused ultrasound method using controlled acoustic cavitation to mechanically disintegrate tissue. In this study, we investigated the feasibility of treating primary OS tumors with histotripsy using a 500-kHz transducer on excised canine OS samples harvested after surgery at the Veterinary Teaching Hospital at Virginia Tech. Samples were embedded in gelatin tissue phantoms and treated with the 500-kHz histotripsy system using one- or two-cycle pulses at a pulse repetition frequency of 250 Hz and a dosage of 4000 pulses/point. Separate experiments also assessed histotripsy effects on normal canine bone and nerve using the same pulsing parameters. After treatment, histopathological evaluation of the samples was completed. To determine the feasibility of treating OS through intact skin/soft tissue, additional histotripsy experiments assessed OS with overlying tissues. Generation of bubble clouds was achieved at the focus in all tumor samples at peak negative pressures of 26.2 ± 4.5 MPa. Histopathology revealed effective cell ablation in treated areas for OS tumors, with no evidence of cell death or tissue damage in normal tissues. Treatment through tissue/skin resulted in generation of well-confined bubble clouds and ablation zones inside OS tumors. Results illustrate the feasibility of treating OS tumors with histotripsy. CORRIGENDUM: The authors regret that errors were present in the above article. The legend for Figure 5 on page 3441 should read “Fig. 5. Normal, healthy, non-neoplastic bone was excised from amputated canine limbs and subjected to histology. No histological differences were noted between untreated (a: magnification 4 x, b: magnification 40 x) and treated samples (c: magnification 4 x, d: magnification 40 x).” Also, the final section heading on page 3439 should read “Histotripsy ablation of ex vivo bone and nerve specimens.” Finally, the reference after the last complete sentence on page 3437 is incomplete and should read “Focal pressure waveforms for the 500-kHz transducer were measured using a custom-built fiberoptic hydrophone (FOPH) in degassed water at the focal point of each transducer (Parsons et al. 2006).” The authors would like to apologise for any inconvenience caused.
- Histotripsy Ablation of Spontaneously Occurring Canine Bone TumorsRuger, Lauren N.; Hay, Alayna N.; Gannon, Jessica M.; Sheppard, Hannah O.; Coutermarsh-Ott, Sheryl L.; Daniel, Gregory B.; Kierski, Katharine R.; Ciepluch, Brittany J.; Vlaisavljevich, Eli; Tuohy, Joanne L. (IEEE, 2023-01)Objective: Osteosarcoma (OS) is a devastating primary bone tumor in dogs and humans with limited non-surgical treatment options. As the first completely non-invasive and non-thermal ablation technique, histotripsy has the potential to significantly improve the standard of care for patients with primary bone tumors. Introduction: Standard of care treatment for primary appendicular OS involves surgical resection via either limb amputation or limb-salvage surgery for suitable candidates. Biological similarities between canine and human OS make the dog an informative comparative oncology research model to advance treatment options for primary OS. Evaluating histotripsy for ablating spontaneous canine primary OS will build a foundation upon which histotripsy can be translated clinically into a standard of care therapy for canine and human OS. Methods: Five dogs with suspected spontaneous OS were treated with a 500 kHz histotripsy system guided by real-time ultrasound image guidance. Spherical ablation volumes within each tumor (1.25-3 cm in diameter) were treated with single cycle histotripsy pulses applied at a pulse repetition frequency of 500 Hz and a dose of 500 pulses/point. Results: Tumor ablation was successfully identified grossly and histologically within the targeted treatment regions of all subjects. Histotripsy treatments were well-tolerated amongst all patients with no significant clinical adverse effects. Conclusion & Significance: Histotripsy safely and effectively ablated the targeted treatment volumes in all subjects, demonstrating its potential to serve as a non-invasive treatment modality for primary bone tumors.