Virginia Tech Structural Engineering and Materials Report Series
Permanent URI for this collection
Browse
Browsing Virginia Tech Structural Engineering and Materials Report Series by Subject "Doorjambs"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Experimental Evaluation of a Vehicular Access Door Subjected to Hurricane Force Wind PressuresGao, Tian; Moen, Cristopher D. (Virginia Polytechnic Institute and State University, 2009-11-01)This report presents findings on the behavior of a typical rolling sheet vehicular access door under a hurricane force wind pressure. The objectives are to quantify the structural behavior of a rolling sheet vehicular access door and the attached frame under both positive pressure (pushing the door into the building) and negative pressure (suction pulling the door away from the building), including the direct measurement of the catenary forces in the wind locks with strain gauges. The results will be used to optimize existing design methods for a rolling sheet vehicular access door and the supporting door frame.
- Vehicular Access Doors under Hurricane Force Wind Pressure: Analysis Methods and a Design ToolJanas, Matthew; Moen, Cristopher D. (Virginia Polytechnic Institute and State University, 2011-08-01)It is essential that rolling sheet metal access doors in metal buildings, and the door jambs they are attached to, resist high pressures during an extreme wind event. Catastrophic damage to the building and its contents can occur if the door fails, as documented by recent post!hurricane surveys conducted after Hurricanes Ike and Katrina (FEMA 2005a; FEMA 2005b; RICOWI 2006; RICOWI 2007; RICOWI 2009). Once the door is breached, pressure accumulates inside the building that can fail the walls and roof (Figure 1). Estimated yearly damage from windinduced damage in the U.S. is 5.4 billion dollars (NOAA 2011), reinforcing the need for reliable wind resistance structures and accurate wind design procedures. This research program aims to complement the existing DASMA access door wind analysis approach with a general procedure applicable to a wider range of access doors and jamb details, including doors attached to flexible jambs, e.g., cold-formed steel framing. The generalized analysis procedures are founded on an analytical framework of nonlinear Euler-Bernoulli elastica differential equations. Jamb stiffness boundary conditions are approximated with hand calculations employing existing cantilever and torsional stiffness engineering expressions. The analytical framework is validated with thin-shell finite element modeling and the Douglasville experimental data, and then implemented as a custom built, freely available Matlab program.