Department of Biological Sciences
Permanent URI for this community
Browse
Browsing Department of Biological Sciences by Subject "16S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of Rhododendron removal on soil bacterial and fungal communities in southern Appalachian forestsOsburn, Ernest D.; Miniat, Chelcy F.; Elliott, Katherine J.; Barrett, John E. (2021-09-15)Rhododendron maximum, a native ericaceous evergreen shrub, is expanding in forests of the southern Appalachian region following eastern hemlock (Tsuga canadensis) mortality due to hemlock woolly adelgid (Adelges tsugae) infestations. The goal of our study was to examine soil microbial community responses to experimental R. maximum removal treatments. The experiment was implemented as a 2 x 2 factorial design, including two R. maximum canopy removal levels (cut vs. not cut) combined with two forest floor removal levels (burned vs. not burned). These treatments were designed as potential management strategies to facilitate hardwood tree establishment in forests that have experienced T. canadensis declines. We sampled soils after removals and characterized bacterial and fungal communities using amplicon sequencing. Shrub removal did not affect bacterial or fungal alpha diversity but did affect both bacterial and fungal community composition. Relative abundances of bacterial phyla and fungal classes exhibited no differences among R. maximum removal treatments. However, specific bacterial and fungal taxa that were responsive to R. maximum removal (i.e., differentially abundant sequences) did exhibit clear patterns at high taxonomic levels. Specifically, taxa that responded negatively to R. maximum removal were found primarily in two bacterial phyla (Proteobacteria and Bacteroidetes) and one fungal class (Archaeorhizomycetes) while positive responders were clustered in several other bacterial phyla (e.g., Actinobacteria, Planctomycetes, Cyanobacteria). Fungal functional guilds also responded to R. maximum removal, including negative responses of ericoid mycorrhizae and positive responses of arbuscular mycorrhizae and wood saprotrophs. Effects of R. maximum removal on soil microbial communities were minor overall, but clear effects on some key functional groups were evident (i.e., mycorrhizal fungi), suggesting that microbial responses to R. maximum removal may influence recovery of forests in the southern Appalachian region.
- Soil Bacterial and Fungal Communities Exhibit Distinct Long-Term Responses to Disturbance in Temperate ForestsOsburn, Ernest D.; McBride, Steven Glynn II; Aylward, Frank O.; Badgley, Brian D.; Strahm, Brian D.; Knoepp, Jennifer D.; Barrett, John E. (2019-12-11)In Appalachian ecosystems, forest disturbance has long-term effects on microbially driven biogeochemical processes such as nitrogen (N) cycling. However, little is known regarding long-term responses of forest soil microbial communities to disturbance in the region. We used 16S and ITS sequencing to characterize soil bacterial (16S) and fungal (ITS) communities across forested watersheds with a range of past disturbance regimes and adjacent reference forests at the Coweeta Hydrologic Laboratory in the Appalachian mountains of North Carolina. Bacterial communities in previously disturbed forests exhibited consistent responses, including increased alpha diversity and increased abundance of copiotrophic (e.g., Proteobacteria) and N-cycling (e.g., Nitrospirae) bacterial phyla. Fungal community composition also showed disturbance effects, particularly in mycorrhizal taxa. However, disturbance did not affect fungal alpha diversity, and disturbance effects were not consistent at the fungal class level. Co-occurrence networks constructed for bacteria and fungi showed that disturbed communities were characterized by more connected and tightly clustered network topologies, indicating that disturbance alters not only community composition but also potential ecological interactions among taxa. Although bacteria and fungi displayed different long-term responses to forest disturbance, our results demonstrate clear responses of important bacterial and fungal functional groups (e.g., nitrifying bacteria and mycorrhizal fungi), and suggest that both microbial groups play key roles in the long-term alterations to biogeochemical processes observed following forest disturbance in the region.