Scholarly Works, Physics

Permanent URI for this collection

Research articles, presentations, and other scholarship

Browse

Recent Submissions

Now showing 1 - 20 of 1049
  • Lattice matched GeSn/InAlAs heterostructure: Role of Sn in energy band alignment, atomic layer diffusion and photoluminescence
    Karthikeyan, Sengunthar; Joshi, Rutwik; Zhao, Jing; Bodnar, Robert J.; Magill, Brenden A.; Pleimling, Yannick; Khodaparast, Giti A.; Hudait, Mantu K. (Royal Society Chemistry, 2023-07-20)
    Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge0.97Sn0.03/AlAs; (ii) a 0.81% compressively strained Ge0.94Sn0.06/Ge; and (iii) a lattice matched Ge0.94Sn0.06/In0.12Al0.88As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge-Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge0.94Sn0.06 alloy was determined as b = 314.81 ± 14 cm−1. Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of Eg,Γ = 0.72 eV and Eg,L = 0.66 eV for 0.81% compressively strained Ge0.94Sn0.06, and Eg,Γ = 0.73 eV and Eg,L = 0.68 eV for lattice matched Ge0.94Sn0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of ΔEV = 0.91 ± 0.1 eV and conduction band offset of ΔEC,Γ-X = 0.64 ± 0.1 eV were determined from the Ge0.94Sn0.06/In0.12Al0.88As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device.
  • Non-isometry, state dependence and holography
    Antonini, Stefano; Balasubramanian, Vijay; Bao, Ning; Cao, ChunJun; Chemissany, Wissam (2025-02-21)
    We establish an equivalence between non-isometry of quantum codes and state dependence of operator reconstruction, and discuss implications of this equivalence for holographic duality. Specifically, we define quantitative measures of non-isometry and state dependence and describe bounds relating these quantities. In the context of holography we show that, assuming known gravitational path integral results for overlaps between semiclassical states, non-isometric bulk-to-boundary maps with a trivial kernel are approximately isometric and bulk reconstruction approximately state-independent. In contrast, non-isometric maps with a non-empty kernel always lead to state-dependent reconstruction. We also show that if a global bulk-to-boundary map is non-isometric, then there exists a region in the bulk which is causally disconnected from the boundary. Finally, we conjecture that, under certain physical assumptions for the definition of the Hilbert space of effective field theory in AdS space, the presence of a global horizon implies a non-isometric global bulk-to-boundary map.
  • High-Efficiency Multilevel Phase Lenses with Nanostructures on Polyimide Membranes
    Howe, Leslie; Rajapaksha, Tharindu D.; Ellepola, Kalani H.; Ho, Vinh X.; Aycock, Zachary; Nguyen, Minh L. P.; Leckey, John P.; Macdonnell, Dave G.; Kim, Hyun Jung; Vinh, Nguyen Q. (Wiley- VCH, 2024-07-16)
    The emergence of planar meta-lenses on flexible materials has profoundly impacted the long-standing perception of diffractive optics. Despite their advantages, these lenses still face challenges in design and fabrication to obtain high focusing efficiency and resolving power. A nanofabrication technique is demonstrated based on photolithography and polyimide casting for realizing membrane-based multilevel phase-type Fresnel zone plates (FZPs) with high focusing efficiency. By employing advantageous techniques, these lenses with nanostructures are directly patterned into thin polyimide membranes. The computational and experimental results have indicated that the focusing efficiency of these nanostructures at the primary focus increases significantly with increasing the number of phase levels. Specifically, 16-level phase lenses on a polyimide membrane can achieve a focusing efficiency of more than 91.6% of the input signal (9.5 times better than that of a conventional amplitude-type FZP) and focus light into a diffraction-limited spot together with very weak side-lobes. Furthermore, these lenses exhibit considerably reduced unwanted diffraction orders and produce extremely low background signals. The potential impact of these lenses extends across various applications and techniques including microscopy, imaging, micro-diffraction, remote sensing, and space flight instruments which require lightweight and flexible configurations.
  • ARQUIN : Architectures for Multinode Superconducting Quantum Computers
    Ang, James; Carini, Gabriella; Chen, Yanzhu; Chuang, Isaac; Demarco, Michael; Economou, Sophia E.; Eickbusch, Alec; Faraon, Andrei; Fu, Kai-mei M.; Girvin, Steven; Hatridge, Michael; Houck, Andrew; Hilaire, Paul; Krsulich, Kevin; Li, Ang; Liu, Chenxu; Liu, Yuan; Martonosi, Margaret; Mckay, David; Misewich, Jim; Ritter, Mark; Schoelkopf, Robert; Stein, Samuel; Sussman, Sara; Tang, Hong; Tang, Wei; Tomesh, Teague; Tubman, Norm; Wang, Chen; Wiebe, Nathan; Yao, Yongxin; Yost, Dillon; Zhou, Yiyu (ACM, 2024-09-19)
    Many proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this article, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10–100× better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.
  • TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit Ansätze
    Anastasiou, Panagiotis G.; Chen, Yanzhu; Mayhall, Nicholas J.; Barnes, Edwin Fleming; Economou, Sophia E. (American Physical Society, 2024-03-07)
    Adaptive quantum variational algorithms are particularly promising for simulating strongly correlated systems on near-term quantum hardware, but they are not yet viable due, in large part, to the severe coherence time limitations on current devices. In this paper, we introduce an algorithm called TETRIS-ADAPT-VQE (tiling efficient trial circuits with rotations implemented simultaneously adaptive derivative-assembled problem-tailored Ansatz variational quantum eigensolver), which iteratively builds up variational Ansätze a few operators at a time in a way dictated by the problem being simulated. This algorithm is a modified version of the ADAPT-VQE algorithm, in which the one-operator-at-a-time rule is lifted to allow for the addition of multiple operators with disjoint supports in each iteration. TETRIS-ADAPT-VQE results in denser but significantly shallower circuits, without increasing the number of controlled-not gates or variational parameters. Its advantage over the original algorithm in terms of circuit depths increases with the system size. Moreover, the expensive step of measuring the energy gradient with respect to each candidate unitary at each iteration is performed only a fraction of the time compared with ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.
  • Microscale Metal Patterning on Any Substrate: Exploring the Potential of Poly(dopamine) Films in High Resolution, High Contrast, Conformal Lithography
    Kunkel, Elliott D.; Loker, C. Blake; Cowden, Hunter N.; Robinson, Hans D. (American Chemical Society, 2024-11-20)
    We have explored the potential of poly(dopamine) (PDA) thin films as versatile, high resolution conformal photoresists, using catalytic photoreduction of silver ions to micropattern the film. The combination of photosensitivity, biocompatibilty, and straightforward deposition under mild conditions into thin (∼45 nm) conformal coatings on nearly any material makes PDA films of interest in lithographic patterning on highly nonplanar geometries as well as on soft and biological materials where standard photoresists cannot be used. PDA and poly(norepinephrine) (PNE) films deposited with a standard autoxidation process were investigated along with PDA film deposited with a fast oxidation (FO) technique. Notably, we find that nonspecific deposition of silver off the lithographic pattern is strongly suppressed in PNE and nearly absent in FO-PDA films, which makes very high contrast lithography possible. We attribute this to a lower ratio of catechol to quinone moieties in these films compared to standard PDA films. PNE and FO-PDA films also exhibit smaller silver grain sizes (<40 nm) than standard PDA films, where grains are up to 200 nm in size. We demonstrate laser-scanning lithography patterns at 1.7 μm spatial resolution near the optical resolution limit of the experiment. Continuous silver films can readily be deposited on PDA, PNE, and FO-PDA with blue (Formula Presented = 473 nm) and UV-A (375 nm) light, but not with green (515 nm) light. The UV light at lower intensities deposits silver several times faster than the blue light but also degrades the deposited silver at high light intensities. Silver films deposited in this way reach the percolation threshold at optical doses (at Formula Presented = 473 nm) in the range of 10-50 kJ/cm2, and SEM images of the films appear nearly pinhole free at comparable doses.
  • Generation of genuine all-way entanglement in defect-nuclear spin systems through dynamical decoupling sequences
    Takou, Evangelia; Barnes, Edwin Fleming; Economou, Sophia E. (Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2024-03-28)
    Multipartite entangled states are an essential resource for sensing, quantum error correction, and cryptography. Color centers in solids are one of the leading platforms for quantum networking due to the availability of a nuclear spin memory that can be entangled with the optically active electronic spin through dynamical decoupling sequences. Creating electron-nuclear entangled states in these systems is a difficult task as the always-on hyperfine interactions prohibit complete isolation of the target dynamics from the unwanted spin bath. While this emergent cross-talk can be alleviated by prolonging the entanglement generation, the gate durations quickly exceed coherence times. Here we show how to prepare high-quality GHZMlike states with minimal cross-talk. We introduce the M-tangling power of an evolution operator, which allows us to verify genuine all-way correlations. Using experimentally measured hyperfine parameters of an NV center spin in diamond coupled to carbon-13 lattice spins, we show how to use sequential or single-shot entangling operations to prepare GHZM-like states of up to M = 10 qubits within time constraints that saturate bounds on M-way correlations. We study the entanglement of mixed electron-nuclear states and develop a non-unitary M-tangling power which additionally captures correlations arising from all unwanted nuclear spins. We further derive a non-unitary M-tangling power which incorporates the impact of electronic dephasing errors on the M-way correlations. Finally, we inspect the performance of our protocols in the presence of experimentally reported pulse errors, finding that XY decoupling sequences can lead to high-fidelity GHZ state preparation.
  • Parametrization and optimizability of pulse-level variational quantum eigensolvers
    Sherbert, Kyle M.; Amer, Hisham; Economou, Sophia E.; Barnes, Edwin; Mayhall, Nicholas J. (American Physical Society, 2025-02-14)
    In conventional variational quantum eigensolvers (VQEs), trial states are prepared by applying series of parameterized gates to a reference state, with the gate parameters being varied to minimize the energy of the target system. Recognizing that the gates are intermediates which are ultimately compiled into a set of control pulses to be applied to each qubit in the lab, the recently proposed ctrl-VQE algorithm takes the amplitudes, frequencies, and phases of the pulse as the variational parameters used to minimize the molecular energy. In this work, we explore how all three degrees of freedom interrelate with one another. To this end, we consider several distinct strategies to parameterize the control pulses, assessing each one through numerical simulations of a transmonlike device. For each parameterization, we contrast the pulse duration required to prepare a good ansatz, and the difficulty to optimize that ansatz from a well-defined initial state. We deduce several guiding heuristics to implement practical ctrl-VQE in hardware, which we anticipate will generalize for generic device architectures.
  • Scaling adaptive quantum simulation algorithms via operator pool tiling
    Van Dyke, John S.; Shirali, Karunya; Barron, George S.; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E. (American Physical Society, 2024-02-16)
    Adaptive variational quantum simulation algorithms use information from a quantum computer to dynamically create optimal trial wave functions for a given problem Hamiltonian. A key ingredient in these algorithms is a predefined operator pool from which trial wave functions are constructed. Finding suitable pools is critical for the efficiency of the algorithm as the problem size increases. Here, we present a technique called operator pool tiling that facilitates the construction of problem-tailored pools for arbitrarily large problem instances. By first performing an Adaptive Derivative-Assembled Problem-Tailored Ansatz Variational Quantum Eigensolver (ADAPT-VQE) calculation on a smaller instance of the problem using a large, but computationally inefficient, operator pool, we extract the most relevant operators and use them to design more efficient pools for larger instances. We demonstrate the method here on strongly correlated quantum spin models in one and two dimensions, finding that ADAPT automatically finds a highly effective ansatz for these systems. Given that many problems, such as those arising in condensed matter physics, have a naturally repeating lattice structure, we expect the pool tiling method to be a widely applicable technique apt for such systems.
  • Hilbert space fragmentation and subspace scar time-crystallinity in driven homogeneous central-spin models
    Kumar, Abhishek; Frantzeskakis, Rafail; Barnes, Edwin (American Physical Society, 2025-01-03)
    We study the stroboscopic nonequilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions. The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces, which oscillate between two disjointed two-dimensional subspaces and thus break the discrete time-translation symmetry of the system. Our analytical and numerical analyses reveal that fully polarized states of the satellite spins exhibit fragmentations that are stable against perturbations and have high overlap with Floquet eigenstates of atypically low bipartite entanglement entropy (scar states). Motivated by the breaking of discrete time translation symmetry by Floquet-Krylov subspaces, we introduce a novel type of time crystal that we call a "subspace time crystal."We present evidence of robust time-crystalline behavior in the form of a period doubling of the total magnetization of fully polarized satellite spin states that persists over long timescales. We compute nonequilibrium phase diagrams with respect to a magnetic field, coupling terms, and pulse error for various interaction types, including Heisenberg, Ising, XXZ, and XX. We also discuss possible experimental realizations of scar time crystals in color center, quantum dot, and rare-earth ion platforms.
  • Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms
    Ramoa, Mafalda; Santos, Luis Paulo; Mayhall, Nicholas J.; Barnes, Edwin; Economou, Sophia E. (IOP Publishing, 2024-11-18)
    Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
  • Dynamically corrected gates in silicon singlet-triplet spin qubits
    Walelign, Habitamu Y.; Cai, Xinxin; Li, Bikun; Barnes, Edwin; Nichol, John M. (American Physical Society, 2024-12-10)
    Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of 3, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup.
  • Protocol for nearly deterministic parity projection on two photonic qubits
    Liu, Chenxu; Frantzeskakis, Rafail; Economou, Sophia E.; Barnes, Edwin (American Physical Society, 2024-11-15)
    Photonic parity projection plays an important role in photonic quantum information processing. Nondestructive parity projections normally require high-fidelity controlled-Z gates between photonic and matter qubits, which can be experimentally demanding. In this paper, we propose a nearly deterministic parity projection protocol on two photonic qubits which only requires stable matter-photon controlled-phase gates. We also demonstrate that our protocol can tolerate moderate Gaussian phase errors in the controlled-phase gates as well as Pauli errors on the matter qubits. The fact that our protocol does not require perfect controlled-Z gates makes it more amenable to experimental implementation. Although we focus on photonic qubits, our protocol can be applied to any physical system or circuit with imperfect controlled-Z gates. Our protocol also provides a new optimization space for parity projection operations on various physical platforms, which is potentially beneficial for achieving high-fidelity parity projection operations.
  • High-throughput assessment of the controllability of a nuclear-spin register coupled to a defect
    Dakis, Filippos; Takou, Evangelia; Barnes, Edwin; Economou, Sophia E. (American Physical Society, 2024-11-25)
    Quantum memories play a key role in facilitating tasks within quantum networks and quantum information processing, including secure communications, advanced quantum sensing, and distributed quantum computing. Progress in characterizing large nuclear-spin registers coupled to defect electronic spins has been significant, but selecting memory qubits remains challenging due to the multitude of possible assignments. Numerical simulations for evaluating entangling gate fidelities encounter obstacles, restricting research to small registers, while experimental investigations are time-consuming and often limited to well-understood samples. Here we present an efficient methodology for systematically assessing the controllability of defect systems coupled to nuclear-spin registers. We showcase the approach by investigating the generation of entanglement links between silicon monovacancy or divacancy centers in SiC and randomly selected sets of nuclear spins within the two-species (13C and 29Si) nuclear register. We quantify the performance of entangling gate operations and present the achievable gate fidelities, considering both the size of the register and the presence of unwanted nuclear spins. We find that some control sequences perform better than others depending on the number of target versus bath nuclei. This efficient approach is a guide for both experimental investigation and engineering, facilitating the high-throughput exploration of suitable defect systems for quantum memories.
  • Long-distance photon-mediated and short-distance entangling gates in three-qubit quantum dot spin systems
    Estakhri, Nooshin M.; Warren, Ada; Economou, Sophia E.; Barnes, Edwin (American Physical Society, 2024-10-11)
    Superconducting resonator couplers will likely become an essential component in modular semiconductor quantum dot (QD) spin qubit processors, as they help alleviate crosstalk and wiring issues as the number of qubits increases. Here, we focus on a three-qubit system composed of two modules: a two-electron triple QD resonator coupled to a single-electron double QD. Using a combination of analytical techniques and numerical results, we derive an effective Hamiltonian that describes the three-qubit logical subspace and show that it accurately captures the dynamics of the system. We examine the performance of short-range and long-range entangling gates, revealing the effect of a spectator qubit in reducing the gate fidelities in both cases. We further study the competition between nonadiabatic errors and spectator-associated errors in short-range operations and quantify their relative importance across practical parameter ranges for short and long gate times. We also analyze the impact of charge noise together with residual coupling to the spectator qubit on intermodule entangling gates and find that for current experimental settings, leakage errors are the main source of infidelities in these operations. Our results help pave the way toward identifying optimal modular QD architectures for quantum information processing on semiconductor chips.
  • Rotational magic conditions for ultracold molecules in the presence of Raman and Rayleigh scattering
    Kotochigova, Svetlana; Guan, Qingze; Tiesinga, Eite; Scarola, Vito W.; DeMarco, Brian; Gadway, Bryce (IOP Publishing, 2024-06-20)
    Molecules have vibrational, rotational, spin-orbit and hyperfine degrees of freedom or quantum states, each of which responds in a unique fashion to external electromagnetic radiation. The control over superpositions of these quantum states is key to coherent manipulation of molecules. For example, the better the coherence time the longer quantum simulations can last. The important quantity for controlling an ultracold molecule with laser light is its complex-valued molecular dynamic polarizability. Its real part determines the tweezer or trapping potential as felt by the molecule, while its imaginary part limits the coherence time. Here, our study shows that efficient trapping of a molecule in its vibrational ground state can be achieved by selecting a laser frequency with a detuning on the order of tens of GHz relative to an electric-dipole-forbidden molecular transition. Close proximity to this nearly forbidden transition allows to create a sufficiently deep trapping potential for multiple rotational states without sacrificing coherence times among these states from Raman and Rayleigh scattering. In fact, we demonstrate that magic trapping conditions for multiple rotational states of the ultracold 23Na87Rb polar molecule can be created.
  • Quantum simulation costs for Suzuki-Trotter decomposition of quantum many-body lattice models
    Myers, Nathan M.; Scott, Ryan; Park, Kwon; Scarola, Vito W. (American Physical Society, 2023-06-28)
    Quantum computers offer the potential to efficiently simulate the dynamics of quantum systems, a task whose difficulty scales exponentially with system size on classical devices. To assess the potential for near-term quantum computers to simulate many-body systems we develop a formalism to straightforwardly compute bounds on the number of Trotter steps needed to accurately simulate the time evolution of fermionic lattice models based on the first-order commutator scaling. We apply this formalism to two closely related many-body models prominent in condensed matter physics, the Hubbard and t-J models. We find that, while a naive comparison of the Trotter depth first seems to favor the Hubbard model, careful consideration of the model parameters and the allowable error for accurate simulation leads to a substantial advantage in favor of the t-J model. These results and formalism set the stage for significant improvements in quantum simulation costs.
  • DUNE Phase II: scientific opportunities, detector concepts, technological solutions
    Abed Abud, A.; Abi, B.; Acciarri, R.; Acero, M. A.; Adames, M. R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Akbar, F.; Allison, K.; Alonso Monsalve, S.; Alrashed, M.; Alton, A.; Alvarez, R.; Alves, T.; Amar, H.; Amedo, P.; Anderson, J.; Andreopoulos, C.; Andreotti, M.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anfimov, N.; Ankowski, A.; Antic, D.; Antoniassi, M.; Antonova, M.; Antoshkin, A.; Aranda-Fernandez, A.; Arellano, L.; Arrieta Diaz, E.; Arroyave, M. A.; Asaadi, J.; Ashkenazi, A.; Asner, D. M.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Azam, M. B.; Azfar, F.; Back, A.; Back, H.; Back, J. J.; Bagaturia, I.; Bagby, L.; Balashov, N.; Balasubramanian, S.; Baldi, P.; Baldini, W.; Baldonedo, J.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barbu, D.; Barenboim, G.; Barham Alzás, P.; Barker, G. J.; Barkhouse, W.; Barr, G.; Barranco Monarca, J.; Barros, A.; Barros, N.; Barrow, D.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Batchelor, C.; Bathe-Peters, L.; Battat, J. B. R.; Battisti, F.; Bay, F.; Bazetto, M. C. Q.; Bazo Alba, J. L. L.; Beacom, J. F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benitez Montiel, C.; Benjamin, D.; Bento Neves, F.; Berger, J.; Berkman, S.; Bernal, J.; Bernardini, P. (IOP Publishing, 2024-12-06)
    The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R & D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
  • Emotional words evoke region- and valence-specific patterns of concurrent neuromodulator release in human thalamus and cortex
    Batten, Seth R.; Hartle, Alec E.; Barbosa, Leonardo S.; Hadj-Amar, Beniamino; Bang, Dan; Melville, Natalie; Twomey, Tom; White, Jason P.; Torres, Alexis; Celaya, Xavier; McClure, Samuel M.; Brewer, Gene A.; Lohrenz, Terry; Kishida, Kenneth T.; Bina, Robert W.; Witcher, Mark R.; Vannucci, Marina; Casas, Brooks; Chiu, Pearl; Montague, P. Read; Howe, William M. (Elsevier, 2025-01-28)
    Words represent a uniquely human information channel—humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words. Our combined results suggest that valenced words modulate neuromodulator release in both the thalamus and cortex, but with regionand valence-specific response patterns, as well as hemispheric dependence for dopamine release in the anterior cingulate. Overall, these experiments provide evidence that neuromodulator-dependent valence signaling extends to word semantics in humans, but not in a simple one-valence-per-transmitter fashion.
  • Vertically graded Fe-Ni alloys with low damping and a sizable spin-orbit torque
    Maizel, Rachel E.; Wu, Shuang; Balakrishnan, Purnima P.; Grutter, Alexander J.; Kinane, Christy J.; Caruana, Andrew J.; Nakarmi, Prabandha; Nepal, Bhuwan; Smith, David A.; Lim, Youngmin; Jones, Julia L.; Thomas, Wyatt C.; Zhao, Jing; Michel, F. Marc; Mewes, Tim; Emori, Satoru (American Physical Society, 2024-10-21)
    Energy-efficient spintronic devices require a large spin-orbit torque (SOT) and low damping to excite magnetic precession. In conventional devices with heavy-metal/ferromagnet bilayers, reducing the ferromagnet thickness to approximately 1 nm enhances the SOT but dramatically increases damping. Here, we investigate an alternative approach based on a 10-nm-thick single-layer ferromagnet to attain both low damping and a sizable SOT. Instead of relying on a single interface, we continuously break the bulk inversion symmetry with a vertical compositional gradient of two ferromagnetic elements: Fe with low intrinsic damping and Ni with sizable spin-orbit coupling. We find low effective damping parameters of αeff<5×10-3 in the Fe-Ni alloy films, despite the steep compositional gradients. Moreover, we reveal a sizable antidamping SOT efficiency of |θAD|≈0.05, even without an intentional compositional gradient. Through depth-resolved x-ray diffraction, we identify a lattice strain gradient as crucial symmetry breaking that underpins the SOT. Our findings provide fresh insights into damping and SOTs in single-layer ferromagnets for power-efficient spintronic devices.