Scholarly Works, Physics
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Recent Submissions
- The metamorphosis of the Type Ib SN 2019yvr: late-time interactionFerrari, Lucia; Folatelli, Gaston; Kuncarayakti, Hanindyo; Stritzinger, Maximilian; Maeda, Keiichi; Bersten, Melina; Roman Aguilar, Lili M.; Saez, M. Manuela; Dessart, Luc; Lundqvist, Peter; Mazzali, Paolo; Nagao, Takashi; Ashall, Chris; Bose, Subhash; Brennan, Sean J.; Cai, Yongzhi; Handberg, Rasmus; Holmbo, Simon; Karamehmetoglu, Emir; Pastorello, Andrea; Reguitti, Andrea; Anderson, Joseph; Chen, Ting-Wan; Galbany, Lluis; Gromadzki, Mariusz; Gutierrez, Claudia P.; Inserra, Cosimo; Kankare, Erkki; Mueller Bravo, Tomas E.; Mattila, Seppo; Nicholl, Matt; Pignata, Giuliano; Sollerman, Jesper; Srivastav, Shubham; Young, David R. (Oxford University Press, 2024-12-28)We present observational evidence of late-time interaction between the ejecta of the hydrogen-poor Type Ib supernova (SN) 2019yvr and hydrogen-rich circumstellar material (CSM), similar to the Type Ib SN 2014C. A narrow H alpha emission line appears simultaneously with a break in the light-curve decline rate at around 80-100d after explosion. From the interaction delay and the ejecta velocity, under the assumption that the CSM is detached from the progenitor, we estimate the CSM inner radius to be located at similar to 6.5-9.1 x 10(15) cm. The H alpha emission line persists throughout the nebular phase at least up to +420d post-explosion, with a full width at half maximum of similar to 2000 km s(-1). Assuming a steady mass-loss, the estimated mass-loss rate from the luminosity of the H alpha line is similar to 3-7 x 10(-5) M-circle dot yr(-1). From hydrodynamical modelling and analysis of the nebular spectra, we find a progenitor He-core mass of 3-4 M-circle dot, which would imply an initial mass of 13-15 M-circle dot. Our result supports the case of a relatively low-mass progenitor possibly in a binary system as opposed to a higher mass single star undergoing a luminous blue variable phase.
- Modeling and Simulation of Trapped Ion Quantum Repeaters and NetworksJain, Charu; Chan, Chuen Hei; Kissel, Ezra; Wu, Wenji; Monga, Inder (ACM, 2025-09-08)This paper explores the design and implementation of trapped-ion quantum repeaters and networks using modeling and simulation. We aim to quantitatively understand the practical architecture design and resource requirements of trapped-ion entanglement-based quantum repeater paradigms. Our simulation results explore entanglement rate and fidelity as key performance metrics, and we discuss the major challenges for practical deployment of quantum networks and future directions for research and development in order to meet these challenges.
- Modeling and Simulation of All-photonic Quantum Repeaters and NetworksChan, Chuen Hei; Jain, Charu; Kissel, Ezra; Wu, Wenji; Barnes, Edwin; Economou, Sophia E.; Monga, Inder (ACM, 2025-09-08)This paper explores the design and implementation of all-photonic quantum repeaters and networks using modeling and simulation. We aim to quantitatively understand the practical architecture design and resource requirements of all-photonic entanglement-based quantum repeater paradigms.
- Nucleon Decays into Light New Particles in Neutrino DetectorsHeeck, Julian; Shoemaker, Ian M. (American Physical Society, 2025-09-11)Proton and neutron decays into light new particles X can drastically change the experimental signatures and benefit from the complementarity of large water-Cherenkov neutrino detectors such as Super- and Hyper-Kamiokande and tracking detectors such as JUNO and DUNE. The proton decays p → 𝓁⁺X and p → π⁺X with mX near phase-space closure lead to charged particles below the Cherenkov threshold, rendering them practically invisible in Super- and Hyper-Kamiokande but not in JUNO and DUNE, which are therefore uniquely positioned for these baryon-number-violating signatures despite their smaller size. As an additional signature, such nucleon decays in the Earth can produce a sizable flux of X particles in underground detectors.We present a simple model in which nucleons decay into sub-GeV sterile neutrinos that subsequently decay through active-sterile neutrino mixing, with a promisingly large number of events in Super-Kamiokande even in the seesaw-motivated parameter space.
- Caudate serotonin signaling during social exchange distinguishes essential tremor and Parkinson’s disease patientsHartle, Alec E.; Kishida, Kenneth T.; Sands, L. Paul; Batten, Seth R.; Barbosa, Leonardo S.; Bang, Dan; Lohrenz, Terry; White, Jason P.; Sohrabi, Arian K.; Calafiore, Rebecca L.; DiFeliceantonio, Alexandra G.; Laxton, AdrianW.; Tatter, Stephen B.; Witcher, Mark R.; Montague, P. Read; Howe, W. Matt (Springer Nature, 2025-09-02)Dynamic changes in dopamine, noradrenaline, and serotonin release are believed to causally contribute to the neural computations that support reward-based decision making. Accordingly, changes in signaling by these systems are hypothesized to underwrite multiple cognitive and behavioral symptoms observed in many neurological disorders. Here,we characterize the release of these neurotransmitters measured concurrently in the caudate of patients with Parkinson’s disease or essential tremor undergoing deep brain stimulation surgery as they played a social exchange game. We show that violations in the expected value of monetary offers are encoded by opponent patterns of dopamine and serotonin release in essential tremor, but not Parkinson’s disease, patients. We also demonstrate that these changes in serotonin signaling comprise a neurochemical boundary that subsegments these two neuromotor diseases. Our combined results point to a neural signature of altered reward processing that can be used to understand the signaling deficiencies that underwrite these diseases.
- Cholesterol modulates membrane elasticity via unified biophysical lawsKumarage, Teshani; Gupta, Sudipta; Morris, Nicholas B.; Doole, Fathima T.; Scott, Haden L.; Stingaciu, Laura-Roxana; Pingali, Sai Venkatesh; Katsaras, John; Khelashvili, George; Doktorova, Milka; Brown, Michael F.; Ashkar, Rana (Springer, 2025-07)Cholesterol and lipid unsaturation underlie a balance of opposing forces that features prominently in adaptive cell responses to diet and environmental cues. These competing factors have resulted in contradictory observations of membrane elasticity across different measurement scales, requiring chemical specificity to explain incompatible structural and elastic effects. Here, we demonstrate that - unlike macroscopic observations - lipid membranes exhibit a unified elastic behavior in the mesoscopic regime between molecular and macroscopic dimensions. Using nuclear spin techniques and computational analysis, we find that mesoscopic bending moduli follow a universal dependence on the lipid packing density regardless of cholesterol content, lipid unsaturation, or temperature. Our observations reveal that compositional complexity can be explained by simple biophysical laws that directly map membrane elasticity to molecular packing associated with biological function, curvature transformations, and protein interactions. The obtained scaling laws closely align with theoretical predictions based on conformational chain entropy and elastic stress fields. These findings provide unique insights into the membrane design rules optimized by nature and unlock predictive capabilities for guiding the functional performance of lipid-based materials in synthetic biology and real-world applications.
- Neutrino interaction vertex reconstruction in DUNE with Pandora deep learningAbud, A. A.; Acciarri, R.; Acero, M. A.; Adames, M. R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Akbar, F.; Alemanno, F.; Alex, N. S.; Allison, K.; Alrashed, M.; Alton, A.; Alvarez, R.; Alves, T.; Aman, A.; Amar, H.; Amedo, P.; Anderson, J.; Andreopoulos, C.; Andreotti, M.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anjarazafy, F.; Antic, D.; Antoniassi, M.; Antonova, M.; Aranda-Fernandez, A.; Arellano, L.; Arrieta Diaz, E.; Arroyave, M. A.; Asaadi, J.; Ashkenazi, A.; Asner, D.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Ávila Gómez, D.; Azam, M. B.; Azfar, F.; Back, A.; Back, H.; Back, J. J.; Bagaturia, I.; Bagby, L.; Baigarashev, D.; Balasubramanian, S.; Balboni, A.; Baldi, P.; Baldini, W.; Baldonedo, J.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barbu, D.; Barenboim, G.; Barham Alzás, P.; Barker, G. J.; Barkhouse, W.; Barr, G.; Barranco Monarca, J.; Barros, A.; Barros, N.; Barrow, D.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Basu, D.; Batchelor, C.; Bathe-Peters, L.; Battat, J. B. R.; Battisti, F.; Bay, F.; Bazetto, M. C. Q.; Bazo Alba, J. L. L.; Beacom, J. F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, B.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benitez Montiel, C.; Benjamin, D.; Bento Neves, F.; Berger, J.; Berkman, S.; Bernal, J.; Bernardini, P.; Bersani, A.; Bertolini, E.; Bertolucci, S.; Betancourt, M.; Betancur Rodríguez, A.; Bezawada, Y.; Bezerra, A. T.; Bhat, A.; Bhatnagar, V.; Bhatt, J.; Bhattacharjee, M.; Bhattacharya, M.; Bhuller, S.; Bhuyan, B.; Biagi, S.; Bian, J.; Biery, K.; Bilki, B.; Bishai, M.; Blake, A.; Blaszczyk, F. D.; Blazey, G. C.; Blucher, E.; Bogart, B.; Bogenschuetz, J.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bomben, L.; Bonesini, M.; Bonilla-Diaz, C.; Booth, A.; Boran, F.; Borges Merlo, R.; Bostan, N.; Botogoske, G.; Bottino, B.; Bouet, R.; Boza, J.; Bracinik, J.; Brahma, B.; Brailsford, D.; Bramati, F.; Branca, A.; Brandt, A.; Bremer, J.; Brew, C.; Brice, S. J.; Brio, V.; Brizzolari, C.; Bromberg, C.; Brooke, J.; Bross, A.; Brunetti, G.; Brunetti, M. B.; Buchanan, N.; Budd, H.; Buergi, J.; Bundock, A.; Burgardt, D.; Butchart, S.; Caceres V., G.; Cai, T.; Calabrese, R.; Calabrese, R.; Calcutt, J.; Calivers, L.; Calvo, E.; Caminata, A.; Camino, A. F.; Campanelli, W.; Campani, A.; Campos Benitez, A.; Canci, N.; Capó, J.; Caracas, I.; Caratelli, D.; Carber, D.; Carceller, J. M.; Carini, G.; Carlus, B.; Carneiro, M. F.; Carniti, P.; Caro Terrazas, I.; Carranza, H.; Carrara, N.; Carroll, L.; Carroll, T.; Carter, A.; Casarejos, E.; Casazza, D.; Castaño Forero, J. F.; Castaño, F. A.; Castillo, A.; Castromonte, C.; Catano-Mur, E.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cerna, C.; Cervelli, A.; Cervera Villanueva, A.; Chalifour, M.; Chappell, A.; Chatterjee, A.; Chauhan, B.; Chen, H.; Chen, M.; Chen, W. C.; Chen, Y.; Chen, Z.; Cherdack, D.; Chhibra, S. S.; Chi, C.; Chiapponi, F.; Chirco, R.; Chitirasreemadam, N.; Cho, K.; Choate, S.; Choi, G.; Chokheli, D.; Chong, P. S.; Chowdhury, B.; Christian, D.; Chung, M.; Church, E.; Cicala, M. F.; Cicerchia, M.; Cicero, V.; Ciolini, R.; Clarke, P.; Cline, G.; Cocco, A. G.; Coelho, J. A. B.; Cohen, A.; Collazo, J.; Collot, J.; Conrad, J. M.; Convery, M.; Conway, K.; Copello, S.; Cova, P.; Cox, C.; Cremonesi, L.; Crespo-Anadón, J. I.; Crisler, M.; Cristaldo, E.; Crnkovic, J.; Crone, G.; Cross, R.; Cudd, A.; Cuesta, C.; Cui, Y.; Curciarello, F.; Cussans, D.; Dai, J.; Dalager, O.; Dallaway, W.; D’Amico, R.; da Motta, H.; Dar, Z. A.; Darby, R.; Da Silva Peres, L.; David, Q.; Davies, G. S.; Davini, S.; Dawson, J.; De Aguiar, R.; De Almeida, P.; Debbins, P.; Decowski, M. P.; de Gouvêa, A.; De Holanda, P. C.; De Jong, P.; Del Amo Sanchez, P.; De Lauretis, G.; Delbart, A.; Delepine, D.; Delgado, M.; Dell’Acqua, A.; Delle Monache, G.; Delmonte, N.; De Lurgio, P.; Demario, R.; De Matteis, G.; de Mello Neto, J. R. T.; DeMuth, D. M.; Dennis, S.; Densham, C.; Denton, P.; Deptuch, G. W.; De Roeck, A.; De Romeri, V.; Detje, J. P.; Devine, J.; Dharmapalan, R.; Dias, M.; Diaz, A.; Díaz, J. S.; Díaz, F.; Di Capua, F.; Di Domenico, A.; Di Domizio, S.; Di Falco, S.; Di Giulio, L.; Ding, P.; Di Noto, L.; Diociaiuti, E.; Di Silvestre, V.; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Z.; Dolan, S.; Dolce, M.; Dolek, F.; Dolinski, M. J.; Domenici, D.; Donati, S.; Donon, Y.; Doran, S.; Douglas, D.; Doyle, T. A.; Drielsma, F.; Duarte, L.; Duchesneau, D.; Duffy, K.; Dugas, K.; Dunne, P.; Dutta, B.; Duyang, H.; Dwyer, D. A.; Dyshkant, A. S.; Dytman, S.; Eads, M.; Earle, A.; Edayath, S.; Edmunds, D.; Eisch, J.; Emark, W.; Englezos, P.; Ereditato, A.; Erjavec, T.; Escobar, C. O.; Evans, J. J.; Ewart, E.; Ezeribe, A. C.; Fahey, K.; Falcone, A.; Fani’, M.; Farnese, C.; Farrell, S.; Farzan, Y.; Felix, J.; Feng, Y.; Fernandez-Martinez, E.; da Silva, M. F.; Ferry, G.; Fialova, E.; Fields, L.; Filip, P.; Filkins, A.; Filthaut, F.; Fiorillo, G.; Fiorini, M.; Fogarty, S.; Foreman, W.; Fowler, J.; Franc, J.; Francis, K.; Franco, D.; Franklin, J.; Freeman, J.; Fried, J.; Friedland, A.; Fucci, M.; Fuess, S.; Furic, I. K.; Furman, K.; Furmanski, A. P.; Gaba, R.; Gabrielli, A.; Gago, A. M.; Galizzi, F.; Gallagher, H.; Galli, M.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Gandhi, R.; Ganguly, S.; Gao, F.; Gao, S.; Garcia-Gamez, D.; García-Peris, M. Á.; Gardim, F.; Gardiner, S.; Gastler, D.; Gauch, A.; Gauzzi, P.; Gazzana, S.; Ge, G.; Geffroy, N.; Gelli, B.; Gent, S.; Gerlach, L.; Ghosh, A.; Giammaria, T.; Gibin, D.; Gil-Botella, I.; Gilligan, S.; Gioiosa, A.; Giovannella, S.; Giri, A. K.; Giugliano, C.; Giusti, V.; Gnani, D.; Gogota, O.; Gollapinni, S.; Gollwitzer, K.; Gomes, R. A.; Gomez Bermeo, L. V.; Gomez Fajardo, L. S.; Gonzalez-Diaz, D.; Goodman, M. C.; Goswami, S.; Gotti, C.; Goudeau, J.; Goudzovski, E.; Grace, C.; Gramellini, E.; Gran, R.; Granados, E.; Granger, P.; Grant, C.; Gratieri, D. R.; Grauso, G.; Green, P.; Greenberg, S.; Greer, J.; Griffith, W. C.; Grzelak, K.; Gu, L.; Gu, W.; Guarino, V.; Guarise, M.; Guenette, R.; Guerzoni, M.; Guffanti, D.; Guglielmi, A.; Guo, B.; Guo, F. Y.; Gupta, V.; Gurung, G.; Gutierrez, D.; Guzowski, P.; Guzzo, M. M.; Gwon, S.; Habig, A.; Haegel, L.; Hagaman, L.; Hahn, A.; Hakenmüller, J.; Hamernik, T.; Hamilton, P.; Hancock, J.; Handley, M.; Happacher, F.; Harris, D. A.; Hart, A. L.; Hartnell, J.; Hartnett, T.; Harton, J.; Hasegawa, T.; Hasnip, C. M.; Hatcher, R.; Hawkins, S.; Hays, J.; He, M.; Heavey, A.; Heeger, K. M.; Heindel, A.; Heise, J.; Hellmuth, P.; Henderson, L.; Herner, K.; Hewes, V.; Higuera, A.; Hilgenberg, C.; Himmel, A.; Hinkle, E.; Hirsch, L. R.; Ho, J.; Hoefken Zink, J.; Hoff, J.; Holin, A.; Holvey, T.; Hong, C.; Hoppe, E.; Horiuchi, S.; Horton-Smith, G. A.; Hosokawa, R.; Houdy, T.; Howard, B.; Howell, R.; Hristova, I.; Hronek, M. S.; Huang, J.; Huang, R. G.; Huang, X.; Hulcher, Z.; Iles, G.; Ilic, N.; Iliescu, A. M.; Illingworth, R.; Ingratta, G.; Ioannisian, A.; Irwin, B.; Ismerio Oliveira, M.; Jackson, C. M.; Jain, V.; James, E.; Jang, W.; Jargowsky, B.; Jena, D.; Jentz, I.; Ji, X.; Jiang, C.; Jiang, J.; Jipa, A.; Jo, J. H.; Joaquim, F. R.; Johnson, W.; Jollet, C.; Jones, R.; Jovancevic, N.; Judah, M.; Jung, C. K.; Jung, K. Y.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A. C.; Kadenko, I.; Kalikulov, O.; Kalra, D.; Kandemir, M.; Kaplan, D. M.; Karagiorgi, G.; Karaman, G.; Karcher, A.; Karyotakis, Y.; Kasetti, S. P.; Kashur, L.; Kauther, A.; Kazaryan, N.; Ke, L.; Kearns, E.; Keener, P. T.; Kelly, K. J.; Keloth, R.; Kemp, E.; Kemularia, O.; Kermaidic, Y.; Ketchum, W.; Kettell, S. H.; Khan, N.; Khvedelidze, A.; Kim, D.; Kim, J.; Kim, M. J.; Kim, S.; King, B.; King, M.; Kirby, M.; Kish, A.; Klein, J.; Kleykamp, J.; Klustova, A.; Kobilarcik, T.; Koch, L.; Koehler, K.; Koerner, L. W.; Koh, D. H.; Kordosky, M.; Kosc, T.; Kostelecký, V. A.; Kothekar, K.; Kotler, I.; Kovalcuk, M.; Krah, W.; Kralik, R.; Kramer, M.; Kreczko, L.; Krennrich, F.; Kroupova, T.; Kubota, S.; Kubu, M.; Kudryavtsev, V. A.; Kufatty, G.; Kuhlmann, S.; Kumar, J.; Kumar, P.; Kumar, P.; Kumaran, S.; Kunzmann, J.; Kuravi, R.; Kus, V.; Kutter, T.; Kvasnicka, J.; Labree, T.; Lackey, T.; Lalău, I.; Lambert, A.; Land, B. J.; Lane, C. E.; Lane, N.; Lang, K.; Langford, T.; Langstaff, M.; Lanni, F.; Larkin, J.; Lasorak, P.; Last, D.; Laundrie, A.; Laurenti, G.; Lavaut, E.; Laycock, P.; Lazanu, I.; LaZur, R.; Lazzaroni, M.; Le, T.; Leardini, S.; Learned, J.; LeCompte, T.; Lehmann Miotto, G.; Lehnert, R.; Leitner, M.; Lemoine, H.; Leon Silverio, D.; Lepin, L. M.; Li, J.-Y.; Li, S. W.; Li, Y.; Liao, H.; Lima, R.; Lin, C. S.; Lindebaum, D.; Linden, S.; Lineros, R. A.; Lister, A.; Littlejohn, B. R.; Liu, H.; Liu, J.; Liu, Y.; Lockwitz, S.; Lomidze, I.; Long, K.; Lopes, T. V.; Lopez, J.; López de Rego, I.; López-March, N.; LoSecco, J. M.; Louis, W. C.; Lozano Sanchez, A.; Lu, X.-G.; Luk, K. B.; Luo, X.; Luppi, E.; Machado, A. A.; Machado, P.; Macias, C. T.; Macier, J. R.; MacMahon, M.; Magill, S.; Magueur, C.; Mahn, K.; Maio, A.; Major, A.; Majumdar, K.; Malige, A.; Mameli, S.; Man, M.; Mandujano, R. C.; Maneira, J.; Manly, S.; Mann, A.; Manolopoulos, K.; Manrique Plata, M.; Manthey Corchado, S.; Manyam, V. N.; Manzanillas-Velez, L.; Marchan, M.; Marchionni, A.; Marciano, W.; Marfatia, D.; Mariani, C.; Maricic, J.; Marinho, F.; Marino, A. D.; Markiewicz, T.; Das Chagas Marques, F.; Marquet, C.; Marshak, M.; Marshall, C. M.; Marshall, J.; Martina, L.; Martín-Albo, J.; Martinez, N.; Martinez Caicedo, D. A.; Martinez-Casales, M.; Martínez López, F.; Martínez Miravé, P.; Martynenko, S.; Mascagna, V.; Mastbaum, A.; Masud, M.; Matichard, F.; Matteucci, G.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mawby, I.; Mayhew, F.; Mazza, R.; McAskill, T.; McConkey, N.; McFarland, K. S.; McGrew, C.; McNab, A.; McNulty, C.; Meazza, L.; Meddage, V. C. N.; Mehmood, M.; Mehta, B.; Mehta, P.; Mei, F.; Melas, P.; Mellet, L.; Mena, O.; Mendez, H.; Méndez, D. P.; Mendonca, A. P.; Menegolli, A.; Meng, G.; Mercuri, A. C. E. A.; Meregaglia, A.; Messier, M. D.; Metallo, S.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Micallef, J.; Miccoli, A.; Michna, G.; Milincic, R.; Miller, F.; Miller, G.; Miller, W.; Minotti, A.; Miralles, L.; Mironov, C.; Miryala, S.; Miscetti, S.; Mishra, C. S.; Mishra, P.; Mishra, S. R.; Mislivec, A.; Mladenov, D.; Mocioiu, I.; Mogan, A.; Mohanta, R.; Mohayai, T. A.; Mokhov, N.; Molina, J.; Molina Bueno, L.; Montagna, E.; Montanari, A.; Montanari, C.; Montanari, D.; Montanino, D.; Montaño Zetina, L. M.; Mooney, M.; Moor, A. F.; Moore, M.; Moore, Z.; Moreno, D.; Moreno-Granados, G.; Moreno-Palacios, O.; Morescalchi, L.; Moretti, R.; Morris, C.; Mossey, C.; Moura, C. A.; Mouster, G.; Mu, W.; Mualem, L.; Mueller, J.; Muether, M.; Muheim, F.; Muir, A.; Mukhamejanov, Y.; Mukhamejanova, A.; Mulhearn, M.; Munford, D.; Munteanu, L. J.; Muramatsu, H.; Muraz, J.; Murphy, M.; Murphy, T.; Muse, J.; Mytilinaki, A.; Nachtman, J.; Nagai, Y.; Nagu, S.; Naples, D.; Narita, S.; Nava, J.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nehm, A.; Nelson, J. K.; Neogi, O.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Nichol, R.; Nicolas-Arnaldos, F.; Nielsen, A.; Nikolica, A.; Nikolov, J.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Novella, P.; Nowak, A.; Nowak, J. A.; Oberling, M.; Ochoa-Ricoux, J. P.; Oh, S.; Oh, S. B.; Olivier, A.; Olson, T.; Onel, Y.; Onishchuk, Y.; Oranday, A.; Osbiston, M.; Osorio Vélez, J. A.; O’Sullivan, L.; Otiniano Ormachea, L.; Pagani, L.; Palacio, G.; Palamara, O.; Palestini, S.; Paley, J. M.; Pallavicini, M.; Palomares, C.; Pan, S.; Panareo, M.; Panda, P.; Pandey, V.; Panduro Vazquez, W.; Pantic, E.; Paolone, V.; Papadopoulou, A.; Papaleo, R.; Papoulias, D.; Paramesvaran, S.; Parke, S.; Parsa, S.; Parsa, Z.; Parveen, S.; Parvu, M.; Pasciuto, D.; Pascoli, S.; Pasqualini, L.; Pasternak, J.; Patiño Camargo, G.; Paton, J. L.; Patrick, C.; Patrizii, L.; Patterson, R. B.; Patzak, T.; Paudel, A.; Paul, J.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Peake, A.; Pec, V.; Pedreschi, E.; Peeters, S. J. M.; Pellico, W.; Pennacchio, E.; Penzo, A.; Peres, O. L. G.; Perez Gonzalez, Y. F.; Pérez-Molina, L.; Pernas, C.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Pfaff, M.; Pia, V.; Pickering, L.; Pierini, L.; Pietropaolo, F.; Pimentel, V. L.; Pinaroli, G.; Pincha, S.; Pinchault, J.; Pitts, K.; Pletcher, K.; Plows, K.; Pollack, C.; Pollmann, T.; Pompa, F.; Pons, X.; Poonthottathil, N.; Popov, V.; Poppi, F.; Porter, J.; Porto Paixão, L. G.; Potekhin, M.; Pozzato, M.; Pradhan, R.; Prakash, T.; Prest, M.; Psihas, F.; Pugnere, D.; Pullia, D.; Qian, X.; Queen, J.; Raaf, J. L.; Rabelhofer, M.; Radeka, V.; Rademacker, J.; Radics, B.; Raffaelli, F.; Rafique, A.; Raguzin, E.; Rahe, A.; Rajagopalan, S.; Rajaoalisoa, M.; Rakhno, I.; Rakotondravohitra, L.; Ralaikoto, M. A.; Ralte, L.; Ramirez Delgado, M. A.; Ramson, B.; Randriamanampisoa, S. S.; Rappoldi, A.; Raselli, G.; Rath, T.; Ratoff, P.; Ray, R.; Razafinime, H.; Razakamiandra, R. F.; Rea, E. M.; Real, J. S.; Rebel, B.; Rechenmacher, R.; Reichenbacher, J.; Reitzner, S. D.; Renner, E.; Repetto, S.; Rescia, S.; Resnati, F.; Restrepo, Diego; Reynolds, C.; Ribas, M.; Riboldi, S.; Riccio, C.; Riccobene, G.; Ricol, J. S.; Rigan, M.; Rikalo, A.; Rincón, E. V.; Ritchie-Yates, A.; Ritter, S.; Rivera, D.; Robert, A.; Roberts, A.; Robles, E.; Rocabado Rocha, J. L.; Roda, M.; Rodrigues, M. J. O.; Rondon, J. R.; Rosauro-Alcaraz, S.; Rosier, P.; Ross, D.; Rossella, M.; Rossi, M.; Roy, N.; Roy, P.; Roy, P.; Rubbia, C.; Rudik, D.; Ruggeri, A.; Ruiz Ferreira, G.; Rushiya, K.; Russell, B.; Sacerdoti, S.; Saduyev, N.; Sahoo, S. K.; Sahu, N.; Sakhiyev, S.; Sala, P.; Salmoria, G.; Samanta, S.; Samios, N.; Sanchez, M. C.; Sánchez Bravo, A.; Sánchez-Castillo, A.; Sanchez-Lucas, P.; Sanders, D. A.; Sanfilippo, S.; Santoro, D.; Saoulidou, N.; Sapienza, P.; Sarcevic, I.; Sarra, I.; Savage, G.; Savinov, V.; Scanavini, G.; Scaramelli, A.; Scarff, A.; Schefke, T.; Schellman, H.; Schifano, S.; Schlabach, P.; Schmitz, D.; Schneider, A. W.; Scholberg, K.; Schukraft, A.; Schuld, B.; Schwartz, S.; Segade, A.; Segreto, E.; Senise, C. R.; Sensenig, J.; Seppela, D.; Shaevitz, M. H.; Shanahan, P.; Sharma, P.; Kumar, R.; Sharma Poudel, S.; Shaw, K.; Shaw, T.; Shchablo, K.; Shen, J.; Shepherd-Themistocleous, C.; Shi, J.; Shi, W.; Shin, S.; Shivakoti, S.; Shmakov, A.; Shoemaker, I.; Shooltz, D.; Shrock, R.; Siden, M.; Silber, J.; Simard, L.; Sinclair, J.; Sinev, G.; Singh, Jaydip; Singh, J.; Singh, L.; Singh, P.; Singh, V.; Singh Chauhan, S.; Sipos, R.; Sironneau, C.; Sirri, G.; Siyeon, K.; Skarpaas, K.; Smedley, J.; Smith, J.; Smith, P.; Smolik, J.; Smy, M.; Snape, M.; Snider, E. L.; Snopok, P.; Soares Nunes, M.; Sobel, H.; Soderberg, M.; Solano Salinas, C. J.; Söldner-Rembold, S.; Solomey, N.; Solovov, V.; Sondheim, W. E.; Sorel, M.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Souza Correia, D.; Spinella, F.; Spitz, J.; Spooner, N. J. C.; Stalder, D.; Stancari, M.; Stanco, L.; Steenis, J.; Stein, R.; Steiner, H. M.; Steklain Lisbôa, A. F.; Stewart, J.; Stillwell, B.; Stock, J.; Stokes, T.; Strait, M.; Strauss, T.; Strigari, L.; Stuart, A.; Suarez, J. G.; Subash, J.; Surdo, A.; Suter, L.; Sutton, K.; Suvorov, Y.; Svoboda, R.; Swain, S. K.; Sweeney, C.; Szczerbinska, B.; Szelc, A. M.; Sztuc, A.; Taffara, A.; Talukdar, N.; Tamara, J.; Tanaka, H. A.; Tang, S.; Taniuchi, N.; Tapia Casanova, A. M.; Tapper, A.; Tariq, S.; Tarpara, E.; Tatar, E.; Tayloe, R.; Tedeschi, D.; Teklu, A. M.; Tena Vidal, J.; Tennessen, P.; Tenti, M.; Terao, K.; Terranova, F.; Testera, G.; Thakore, T.; Thea, A.; Thomas, S.; Thompson, A.; Thorn, C.; Thorpe, C.; Timm, S. C.; Tiras, E.; Tishchenko, V.; Tiwari, S.; Todorović, N.; Tomassetti, L.; Tonazzo, A.; Torbunov, D.; Torres Muñoz, D.; Torti, M.; Tortola, M.; Torun, Y.; Tosi, N.; Totani, D.; Toups, M.; Touramanis, C.; Tran, D.; Travaglini, R.; Trevor, J.; Triller, E.; Trilov, S.; Truchon, J.; Truncali, D.; Trzaska, W. H.; Tsai, Y.; Tsai, Y.-T.; Tsamalaidze, Z.; Tsang, K. V.; Tsverava, N.; Tu, S. Z.; Tufanli, S.; Tunnell, C.; Turner, J.; Tuzi, M.; Tyler, J.; Tyley, E.; Tzanov, M.; Uchida, M. A.; Ureña González, J.; Urheim, J.; Usher, T.; Utaegbulam, H.; Uzunyan, S.; Vagins, M. R.; Vahle, P.; Valdiviesso, G. A.; Vale, V.; Valencia, E.; Valentim, R.; Vallari, Z.; Vallazza, E.; Valle, J. W. F.; Van Berg, R.; Forero, D. V.; Vannozzi, A.; Van Nuland-Troost, M.; Varanini, F.; Vargas Auccalla, T.; Vargas Oliva, D.; Vaughan, N.; Vaziri, K.; Vázquez-Ramos, A.; Vega, J.; Vences, J.; Ventura, S.; Verdugo, A.; Vergani, S.; Verzocchi, M.; Vetter, K.; Vicenzi, M.; Vieira de Souza, H.; Vignoli, C.; Vilela, C.; Villa, E.; Viola, S.; Viren, B.; Vizarreta, R.; Vizcaya Hernandez, A. P.; Vlachos, S.; Vorobyev, G.; Vuong, Q.; Waldron, A. V.; Wallach, M.; Walsh, J.; Walton, T.; Wan, L.; Wang, B.; Wang, H.; Wang, J.; Wang, L.; Wang, M. H. L. S.; Wang, X.; Wang, Y.; Warburton, K.; Warner, D.; Warsame, L.; Wascko, M. O.; Waters, D.; Watson, A.; Wawrowska, K.; Weber, A.; Weber, C. M.; Weber, M.; Wei, H.; Weinstein, A.; Westerdale, S.; Wetstein, M.; Whalen, K.; White, A.; Whitehead, L. H.; Whittington, D.; Wieler, F.; Wilhlemi, J.; Wilking, M. J.; Wilkinson, A.; Wilkinson, C.; Wilson, F.; Wilson, R. J.; Winter, P.; Wolcott, J.; Wolfs, J.; Wongjirad, T.; Wood, A.; Wood, K.; Worcester, E.; Worcester, M.; Wresilo, K.; Wrobel, M.; Wu, S.; Wu, W.; Wu, W.; Wurm, M.; Wyenberg, J.; Wynne, B. M.; Xiao, Y.; Xiotidis, I.; Yaeggy, B.; Yahlali, N.; Yandel, E.; Yang, J.; Yang, T.; Yankelevich, A.; Yates, L.; Yonehara, K.; Young, T.; Yu, B.; Yu, H.; Yu, J.; Yu, Y.; Yuan, W.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zapata, O.; Zazueta, L.; Zeller, G. P.; Zennamo, J.; Zettlemoyer, J.; Zeug, K.; Zhang, C.; Zhang, S.; Zhao, M.; Zhivun, E.; Zimmerman, E. D.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R. (2025-06-25)The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.
- CUPID, the Cuore upgrade with particle identificationAlfonso, Krystal; Armatol, A.; Augier, C.; Avignone III, F. T.; Azzolini, O.; Barabash, A. S.; Bari, G.; Barresi, A.; Baudin, D.; Bellini, F.; Benato, G.; Benussi, L.; Berest, V.; Beretta, M.; Bergé, L.; Bettelli, M.; Biassoni, M.; Billard, J.; Boffelli, F.; Boldrini, V.; Brandani, E. D.; Brofferio, C.; Bucci, C.; Buchynska, M.; Camilleri, J.; Campani, A.; Cao, J.; Capelli, C.; Capelli, S.; Caracciolo, V.; Cardani, L.; Carniti, P.; Casali, N.; Celi, E.; Chang, C.; Chapellier, M.; Chen, H.; Chiesa, D.; Cintas, D.; Clemenza, M.; Colantoni, I.; Copello, S.; Cremonesi, O.; Creswick, R. J.; D’Addabbo, A.; Dafinei, I.; Danevich, F. A.; De Dominicis, F.; De Jesus, M.; de Marcillac, P.; Dell’Oro, S.; Di Domizio, S.; Di Lorenzo, S.; Dixon, T.; Drobizhev, A.; Dumoulin, L.; El Idrissi, M.; Faverzani, M.; Ferri, E.; Ferri, F.; Ferroni, F.; Figueroa-Feliciano, E.; Formaggio, J.; Franceschi, A.; Fu, S.; Fujikawa, B. K.; Gascon, J.; Ghislandi, S.; Giachero, A.; Girola, M.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Grant, C.; Gras, P.; Guillaumon, P. V.; Gutierrez, T. D.; Han, K.; Hansen, E. V.; Heeger, K. M.; Helis, D. L.; Huang, H. Z.; Hurst, M. T.; Imbert, L.; Juillard, A.; Karapetrov, G.; Keppel, G.; Khalife, H.; Kobychev, V. V.; Kolomensky, Yu. G.; Kowalski, R.; Lattaud, H.; Lefevre, M.; Lisovenko, M.; Liu, R.; Liu, Y.; Loaiza, P.; Ma, L.; Mancarella, F.; Manenti, N.; Mariani, A.; Marini, L.; Marnieros, S.; Martinez, M.; Maruyama, R. H.; Mas, Ph.; Mayer, D.; Mazzitelli, G.; Mazzola, E.; Mei, Y.; Moore, M. N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nones, C.; Norman, E. B.; Novosad, V.; Nutini, I.; O’Donnell, T.; Olivieri, E.; Olmi, M.; Oregui, B. T.; Pagan, S.; Pageot, M.; Pagnanini, L.; Pasciuto, D.; Pattavina, L.; Penek, Ö.; Peng, H.; Pessina, G.; Pettinacci, V.; Pira, C.; Pirro, S.; Pochon, O.; Poda, D. V.; Polakovic, T.; Polischuk, O. G.; Pottebaum, E. G.; Pozzi, S.; Previtali, E.; Puiu, A.; Puranam, S.; Quitadamo, S.; Rappoldi, A.; Raselli, G. L.; Ressa, A.; Rizzoli, R.; Rosenfeld, C.; Rosier, P.; Rossella, M.; Scarpaci, J. A.; Schmidt, B.; Serino, R.; Shaikina, A.; Shang, K.; Sharma, V.; Shlegel, V. N.; Singh, V.; Sisti, M.; Slocum, P.; Speller, D.; Surukuchi, P. T.; Taffarello, L.; Tomassini, S.; Tomei, C.; Torres, A.; Torres, J. A.; Tozzi, D.; Tretyak, V. I.; Trotta, D.; Velazquez, M.; Vetter, K. J.; Wagaarachchi, S. L.; Wang, G.; Wang, L.; Wang, R.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Xie, F.; Xue, M.; Yang, J.; Yefremenko, V.; Umatov, V. I.; Zarytskyy, M. M.; Zhu, T.; Zolotarova, A.; Zucchelli, S. (2025-07-03)CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ( 0 ν β β ) and other rare events using enriched Li 2 100 MoO 4 scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for 0 ν β β of 100 Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10 - 4 cts / ( keV · kg · yr ) , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of 1.8 · 10 27 yr, corresponding to an effective Majorana neutrino mass ( m β β ) sensitivity of 9–15 meV, and a 3 σ discovery sensitivity of 1 · 10 27 yr, corresponding to an m β β range of 12–21 meV.
- Schubert defects in Lagrangian GrassmanniansGu, Wei; Mihalcea, Leonardo; Sharpe, Eric R.; Xu, Weihong; Zhang, Hao; Zou, Hao (2025-06-13)In this paper, we propose a construction of GLSM defects corresponding to Schubert cycles in Lagrangian Grassmannians, following recent work of Closset-Khlaif on Schubert cycles in ordinary Grassmannians. In the case of Lagrangian Grassmannians, there are superpotential terms in both the bulk GLSM as well as on the defect itself, enforcing isotropy constraints. We check our construction by comparing the locus on which the GLSM defect is supported to mathematical descriptions, checking dimensions, and perhaps most importantly, comparing defect indices to known and expected polynomial invariants of the Schubert cycles in quantum cohomology and quantum K theory.
- Superselection rules, quantum error correction, and quantum chromodynamicsBao, Ning; Cao, ChunJun; Chatwin-Davies, Aidan; Cheng, Gong; Zhu, Guanyu (2025-05-28)We investigate the relationship between superselection rules and quantum error correcting codes. We demonstrate that the existence of a superselection rule implies the Knill-Laflamme condition in quantum error correction. As an example, we examine the code built from quantum chromodynamics, where the proton and neutron states in the model are explored as different superselection sectors that protect logical information. Finally we comment on topological quantum error correcting codes and supersymmetric quantum field theory within this framework.
- Quality assurance and quality control of the 26 m 2 SiPM production for the DarkSide-20k dark matter experimentAcerbi, F.; Adhikari, P.; Agnes, P.; Ahmad, I.; Albergo, S.; Albuquerque, I. F.; Alexander, T.; Alton, A. K.; Amaudruz, P.; Angiolilli, M.; Aprile, E.; Atzori Corona, M.; Auty, D. J.; Ave, M.; Avetisov, I. C.; Azzolini, O.; Back, H. O.; Balmforth, Z.; Barrado Olmedo, A.; Barrillon, P.; Batignani, G.; Bhowmick, P.; Bloem, M.; Blua, S.; Bocci, V.; Bonivento, W.; Bottino, B.; Boulay, M. G.; Buchowicz, A.; Bussino, S.; Busto, J.; Cadeddu, M.; Cadoni, M.; Calabrese, R.; Camillo, V.; Caminata, A.; Canci, N.; Capra, A.; Caravati, M.; Cardenas-Montes, M.; Cargioli, N.; Carlini, M.; Castello, P.; Cavalcante, P.; Cebrian, S.; Cela Ruiz, J.; Chashin, S.; Chepurnov, A.; Cifarelli, L.; Cintas, D.; Cleveland, B.; Coadou, Y.; Cocco, V.; Colaiuda, D.; Conde Vilda, E.; Consiglio, L.; Costa, B. S.; Czubak, M.; D’Auria, S.; Da Rocha Rolo, M. D.; Darbo, G.; Davini, S.; de As mundis, R.; De Cecco, S.; Dellacasa, G.; Derbin, A. V.; Capua, F. D.; Noto, L. D.; Stefano, P. D.; Dias, L. K.; Dionisi, C.; Dolganov, G.; Dordei, F.; Dronik, V.; Elersich, A.; Ellingwood, E.; Erjavec, T.; Fearon, N.; Fernandez Diaz, M.; Ficorella, A.; Fiorillo, G.; Franchini, P.; Franco, D.; Frandini Gatti, H.; Frolov, E.; Gabriele, F.; Gahan, D.; Galbiati, C.; Galiski, G.; Gallina, G.; Gallus, G.; Garbini, M.; Garcia Abia, P.; Gawdzik, A.; Gendotti, A.; Giovanetti, G. K.; Goicoechea Casanueva, V.; Gola, A.; Grandi, L.; Grauso, G.; Grilli di Cortona, G.; Grobov, A.; Gromov, M.; Gulino, M.; Guo, C.; Hackett, B. R.; Hallin, A.; Hamer, A.; Haranczyk, M.; Hessel, T.; Horikawa, S.; Hu, J.; Hubaut, F.; Hucker, J.; Hugues, T.; Hungerford, E. V.; Ianni, A.; Ippoliti, G.; Ippolito, V.; Jamil, A.; Jillings, C.; Keloth, R.; Kemmerich, N.; Kemp, A.; Kester, Carlos E.; Kimura, M.; Kondo, K.; Korga, G.; Kotsiopoulou, L.; Koulosousas, S.; Kubankin, A.; Kunze, P.; Kuss, M.; Kuźniak, M.; Kuzwa, M.; La Commara, M.; Lai, M.; Le Guirriec, E.; Leason, E.; Leoni, A.; Lidey, L.; Lissia, M.; Luzzi, L.; Lychagina, O.; Macfadyen, O.; Machulin, I. N.; Manecki, S.; Manthos, I.; Marasciulli, A.; Margutti, G.; Mari, S. M.; Mariani, C.; Maricic, J.; Martinez, M.; Martoff, C. J.; Matteucci, G.; Mavrokoridis, K.; Mazza, E.; McDonald, A. B.; Merzi, S.; Messina, A.; Milincic, R.; Minutoli, S.; Mitra, A.; Monroe, J.; Moretti, E.; Morrocchi, M.; Mroz, T.; Muratova, V. N.; Murphy, M.; Murra, M.; Muscas, C.; Musico, P.; Nania, R.; Nessi, M.; Nieradka, G.; Nikolopoulos, K.; Nikoloudaki, E.; Nowak, J.; Olchanski, K.; Oleinik, A.; Oleynikov, V.; Organtini, P.; Ortiz de Solrzano, A.; Pallavicini, M.; Pandola, L.; Pantic, E.; Paoloni, E.; Papi, D.; Pastuszak, G.; Paternoster, G.; Pegoraro, P. A.; Pelczar, K.; Perez, R.; Pesudo, V.; Piacentini, S.; Pino, N.; Plante, G.; Pocar, A.; Poehlmann, M.; Pordes, S.; Pralavorio, P.; Preosti, E.; Price, D.; Puglia, S.; Queiroga Bazetto, M.; Ragusa, F.; Ramachers, Y.; Ramirez, A.; Ravinthiran, S.; Razeti, M.; Renshaw, A. L.; Rescigno, M.; Resconi, S.; Retiere, F.; Rignanese, L. P.; Rivetti, A.; Roberts, A.; Roberts, C.; Rogers, G.; Romero, L.; Rossi, M.; Rubbia, A.; Rudik, D.; Sabia, M.; Salomone, P.; Samoylov, O.; Sanfilippo, S.; Santone, D.; Santorelli, R.; Santos, E. M.; Savarese, C.; Scapparone, E.; Schuckman, F. G.; Scioli, G.; Semenov, D. A.; Sheshukov, A.; Simeone, M.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Smirnova, T.; Smith, B.; Sotnikov, A.; Spadoni, F.; Spangenberg, M.; Stefanizzi, R.; Steri, A.; Stornelli, V.; Stracka, S.; Sulis, S.; Sung, A.; Sunny, C.; Suvorov, Y.; Szelc, A. M.; Taborda, O.; Tartaglia, R.; Taylor, A.; Taylor, J.; Testera, G.; Thieme, K.; Thompson, A.; Torres-Lara, S.; Tricomi, A.; Unzhakov, E. V.; Van Uffelen, M.; Viant, T.; Viel, S.; Vishneva, A.; Vogelaar, R. B.; Vossebeld, J.; Vyas, B.; Wada, M.; Walczak, M.; Wang, Y.; Wang, H.; Westerdale, S.; Williams, L.; Wojaczyski, R.; Wojcik, M. M.; Wojcik, M.; Wright, T.; Xie, Y.; Yang, C.; Yin, J.; Zabihi, A.; Zakhary, P.; Zani, A.; Zhang, Y.; Zhu, T.; Zichichi, A.; Zuzel, G.; Zykova, M. P. (2025-05-14)DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two 10.5 m 2 Optical Planes, one at each end of the TPC, and a total of 5 m 2 photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is 93.2 ± 2.5 %, which exceeds the 80% specification defined in the original DarkSide-20k production plan.
- Large-amplitude easy-plane spin-orbit torque oscillators driven by out-of-plane spin current: A micromagnetic studyKubler, Daniel; Smith, David A.; Nguyen, Tommy; Ramos-Diaz, Fernando; Emori, Satoru; Amin, Vivek P. (American Physical Society, 2025-02-18)Spin torque oscillators generate a periodic output signal from a nonperiodic input, making them promising candidates for applications like microwave communications and neuromorphic computing. However, traditional spin torque oscillators suffer from a limited precessional cone angle and thermal stability, as well as a need for an applied bias magnetic field. Here, we use micromagnetic simulations to demonstrate a spin torque oscillator that relies on spin-orbit effects in ferromagnets to overcome these limitations. The key mechanism behind this oscillator is the generation of an out-of-plane spin current, in which both the spin flow and the spin orientation are out of plane. The torque from this spin current enables easy-plane coherent magnetic precession with a large cone angle and high thermal stability over a micron-scale lateral area. Moreover, the precession occurs about an internal field in the free layer, thereby eliminating the need for an external bias field. We find that the ratio of the unconventional out-of-plane spin current to the conventional spin-Hall spin current can be as low as 4% and still result in bias-field-free, room-temperature, self-sustained oscillations. Our results are fundamentally important in demonstrating that a small ratio of unconventional to conventional spin currents critically affects magnetization dynamics. Our findings also provide a theoretical proof of concept of a spintronic device with promising applications.
- Notes on gauging noninvertible symmetries. Part II. Higher multiplicity casesPerez-Lona, Alonso; Robbins, D.; Sharpe, Eric R.; Vandermeulen, T.; Yu, Xingyang (2025-05-07)In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for the c = 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries.
- Outcomes from a workshop on a national center for quantum educationBarnes, Edwin; Bennett, Michael B.; Boltasseva, Alexandra; Borish, Victoria; Brown, Bennett; Carr, Lincoln D.; Ceballos, Russell R.; Dukes, Faith; Easton, Emily W.; Economou, Sophia E.; Edwards, E. E.; Finkelstein, Noah D.; Fracchiolla, C.; Franklin, Diana; Freericks, J. K.; Goss, Valerie; Hannum, Mark; Holincheck, Nancy; Kelly, Angela M.; Lanes, Olivia; Lewandowski, H. J.; Matsler, Karen J.; Mercurio, Emily; Montaño, Inès; Murdock, Maajida; Peltz, Kiera; Perron, Justin K.; Richardson, Christopher J. K.; Rosenberg, Jessica L.; Ross, Richard S.; Ryu, Minjung; Samuel, Raymond E.; Schrode, Nicole; Schwamberger, Susan; Searles, Thomas A.; Singh, Chandralekha; Tingle, Alexandra; Zwickl, Benjamin M. (2025-03-31)In response to numerous programs seeking to advance quantum education and workforce development in the United States, experts from academia, industry, government, and professional societies convened for a National Science Foundation-sponsored workshop in February 2024 to explore the benefits and challenges of establishing a national center for quantum education. Broadly, such a center would foster collaboration and build the infrastructure required to develop a diverse and quantum-ready workforce. The workshop discussions focused on how a center could uniquely address gaps in public, K-12, and undergraduate quantum information science and engineering (QISE) education. Specifically, the community identified activities that, through a center, could lead to an increase in student awareness of quantum careers, boost the number of educators trained in quantum-related subjects, strengthen pathways into quantum careers, enhance the understanding of the US quantum workforce, and elevate public engagement with QISE. Core proposed activities for the center include professional development for educators, coordinated curriculum development and curation, expanded access to educational laboratory equipment, robust evaluation and assessment practices, network building, and enhanced public engagement with quantum science.
- Lattice matched GeSn/InAlAs heterostructure: Role of Sn in energy band alignment, atomic layer diffusion and photoluminescenceKarthikeyan, Sengunthar; Joshi, Rutwik; Zhao, Jing; Bodnar, Robert J.; Magill, Brenden A.; Pleimling, Yannick; Khodaparast, Giti A.; Hudait, Mantu K. (Royal Society Chemistry, 2023-07-20)Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge0.97Sn0.03/AlAs; (ii) a 0.81% compressively strained Ge0.94Sn0.06/Ge; and (iii) a lattice matched Ge0.94Sn0.06/In0.12Al0.88As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge-Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge0.94Sn0.06 alloy was determined as b = 314.81 ± 14 cm−1. Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of Eg,Γ = 0.72 eV and Eg,L = 0.66 eV for 0.81% compressively strained Ge0.94Sn0.06, and Eg,Γ = 0.73 eV and Eg,L = 0.68 eV for lattice matched Ge0.94Sn0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of ΔEV = 0.91 ± 0.1 eV and conduction band offset of ΔEC,Γ-X = 0.64 ± 0.1 eV were determined from the Ge0.94Sn0.06/In0.12Al0.88As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device.
- Non-isometry, state dependence and holographyAntonini, Stefano; Balasubramanian, Vijay; Bao, Ning; Cao, ChunJun; Chemissany, Wissam (2025-02-21)We establish an equivalence between non-isometry of quantum codes and state dependence of operator reconstruction, and discuss implications of this equivalence for holographic duality. Specifically, we define quantitative measures of non-isometry and state dependence and describe bounds relating these quantities. In the context of holography we show that, assuming known gravitational path integral results for overlaps between semiclassical states, non-isometric bulk-to-boundary maps with a trivial kernel are approximately isometric and bulk reconstruction approximately state-independent. In contrast, non-isometric maps with a non-empty kernel always lead to state-dependent reconstruction. We also show that if a global bulk-to-boundary map is non-isometric, then there exists a region in the bulk which is causally disconnected from the boundary. Finally, we conjecture that, under certain physical assumptions for the definition of the Hilbert space of effective field theory in AdS space, the presence of a global horizon implies a non-isometric global bulk-to-boundary map.
- High-Efficiency Multilevel Phase Lenses with Nanostructures on Polyimide MembranesHowe, Leslie; Rajapaksha, Tharindu D.; Ellepola, Kalani H.; Ho, Vinh X.; Aycock, Zachary; Nguyen, Minh L. P.; Leckey, John P.; Macdonnell, Dave G.; Kim, Hyun Jung; Vinh, Nguyen Q. (Wiley- VCH, 2024-07-16)The emergence of planar meta-lenses on flexible materials has profoundly impacted the long-standing perception of diffractive optics. Despite their advantages, these lenses still face challenges in design and fabrication to obtain high focusing efficiency and resolving power. A nanofabrication technique is demonstrated based on photolithography and polyimide casting for realizing membrane-based multilevel phase-type Fresnel zone plates (FZPs) with high focusing efficiency. By employing advantageous techniques, these lenses with nanostructures are directly patterned into thin polyimide membranes. The computational and experimental results have indicated that the focusing efficiency of these nanostructures at the primary focus increases significantly with increasing the number of phase levels. Specifically, 16-level phase lenses on a polyimide membrane can achieve a focusing efficiency of more than 91.6% of the input signal (9.5 times better than that of a conventional amplitude-type FZP) and focus light into a diffraction-limited spot together with very weak side-lobes. Furthermore, these lenses exhibit considerably reduced unwanted diffraction orders and produce extremely low background signals. The potential impact of these lenses extends across various applications and techniques including microscopy, imaging, micro-diffraction, remote sensing, and space flight instruments which require lightweight and flexible configurations.
- ARQUIN : Architectures for Multinode Superconducting Quantum ComputersAng, James; Carini, Gabriella; Chen, Yanzhu; Chuang, Isaac; Demarco, Michael; Economou, Sophia E.; Eickbusch, Alec; Faraon, Andrei; Fu, Kai-mei M.; Girvin, Steven; Hatridge, Michael; Houck, Andrew; Hilaire, Paul; Krsulich, Kevin; Li, Ang; Liu, Chenxu; Liu, Yuan; Martonosi, Margaret; Mckay, David; Misewich, Jim; Ritter, Mark; Schoelkopf, Robert; Stein, Samuel; Sussman, Sara; Tang, Hong; Tang, Wei; Tomesh, Teague; Tubman, Norm; Wang, Chen; Wiebe, Nathan; Yao, Yongxin; Yost, Dillon; Zhou, Yiyu (ACM, 2024-09-19)Many proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this article, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10–100× better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.
- TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit AnsätzeAnastasiou, Panagiotis G.; Chen, Yanzhu; Mayhall, Nicholas J.; Barnes, Edwin Fleming; Economou, Sophia E. (American Physical Society, 2024-03-07)Adaptive quantum variational algorithms are particularly promising for simulating strongly correlated systems on near-term quantum hardware, but they are not yet viable due, in large part, to the severe coherence time limitations on current devices. In this paper, we introduce an algorithm called TETRIS-ADAPT-VQE (tiling efficient trial circuits with rotations implemented simultaneously adaptive derivative-assembled problem-tailored Ansatz variational quantum eigensolver), which iteratively builds up variational Ansätze a few operators at a time in a way dictated by the problem being simulated. This algorithm is a modified version of the ADAPT-VQE algorithm, in which the one-operator-at-a-time rule is lifted to allow for the addition of multiple operators with disjoint supports in each iteration. TETRIS-ADAPT-VQE results in denser but significantly shallower circuits, without increasing the number of controlled-not gates or variational parameters. Its advantage over the original algorithm in terms of circuit depths increases with the system size. Moreover, the expensive step of measuring the energy gradient with respect to each candidate unitary at each iteration is performed only a fraction of the time compared with ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.
- Microscale Metal Patterning on Any Substrate: Exploring the Potential of Poly(dopamine) Films in High Resolution, High Contrast, Conformal LithographyKunkel, Elliott D.; Loker, C. Blake; Cowden, Hunter N.; Robinson, Hans D. (American Chemical Society, 2024-11-20)We have explored the potential of poly(dopamine) (PDA) thin films as versatile, high resolution conformal photoresists, using catalytic photoreduction of silver ions to micropattern the film. The combination of photosensitivity, biocompatibilty, and straightforward deposition under mild conditions into thin (∼45 nm) conformal coatings on nearly any material makes PDA films of interest in lithographic patterning on highly nonplanar geometries as well as on soft and biological materials where standard photoresists cannot be used. PDA and poly(norepinephrine) (PNE) films deposited with a standard autoxidation process were investigated along with PDA film deposited with a fast oxidation (FO) technique. Notably, we find that nonspecific deposition of silver off the lithographic pattern is strongly suppressed in PNE and nearly absent in FO-PDA films, which makes very high contrast lithography possible. We attribute this to a lower ratio of catechol to quinone moieties in these films compared to standard PDA films. PNE and FO-PDA films also exhibit smaller silver grain sizes (<40 nm) than standard PDA films, where grains are up to 200 nm in size. We demonstrate laser-scanning lithography patterns at 1.7 μm spatial resolution near the optical resolution limit of the experiment. Continuous silver films can readily be deposited on PDA, PNE, and FO-PDA with blue (Formula Presented = 473 nm) and UV-A (375 nm) light, but not with green (515 nm) light. The UV light at lower intensities deposits silver several times faster than the blue light but also degrades the deposited silver at high light intensities. Silver films deposited in this way reach the percolation threshold at optical doses (at Formula Presented = 473 nm) in the range of 10-50 kJ/cm2, and SEM images of the films appear nearly pinhole free at comparable doses.