Scholarly Works, Physics

Permanent URI for this collection

Research articles, presentations, and other scholarship

Browse

Recent Submissions

Now showing 1 - 20 of 1078
  • MHONGOOSE: A MeerKAT nearby galaxy H I survey
    de Blok, W. J. G.; Healy, J.; Maccagni, F. M.; Pisano, D. J.; Bosma, A.; English, J.; Jarrett, T.; Marasco, A.; Meurer, G. R.; Veronese, S.; Bigiel, F.; Chemin, L.; Fraternali, F.; Holwerda, B. W.; Kamphuis, P.; Kloeckner, H. R.; Kleiner, D.; Leroy, A. K.; Mogotsi, M.; Oman, K. A.; Schinnerer, E.; Verdes-Montenegro, L.; Westmeier, T.; Wong, O. I.; Zabel, N.; Amram, P.; Carignan, C.; Combes, F.; Brinks, E.; Dettmar, R. J.; Gibson, B. K.; Jozsa, G. I. G.; Koribalski, B. S.; Mcgaugh, S. S.; Oosterloo, T. A.; Spekkens, K.; Schroeder, A. C.; Adams, E. A. K.; Athanassoula, E.; Bershady, M. A.; Beswick, R. J.; Blyth, S.; Elson, E. C.; Frank, B. S.; Heald, G.; Henning, P. A.; Kurapati, S.; Loubser, S. I.; Lucero, D.; Meyer, M.; Namumba, B.; Oh, S. -H.; Sardone, A.; Sheth, K.; Smith, M. W. L.; Sorgho, A.; Walter, F.; Williams, T.; Woudt, P. A.; Zijlstra, A. (EDP Sciences, 2024-08-21)
    The MHONGOOSE (MeerKAT H I Observations of Nearby Galactic Objects: Observing Southern Emitters) survey maps the distribution and kinematics of the neutral atomic hydrogen (H I) gas in and around 30 nearby star-forming spiral and dwarf galaxies to extremely low H I column densities. The H I column density sensitivity (3 sigma over 16 km s(-1)) ranges from similar to 5 x 10(17) cm(-2) at 90 '' resolution to similar to 4 x 10(19) cm(-2) at the highest resolution of 7 ''. The H I mass sensitivity (3 sigma over 50 km s(-1)) is similar to 5.5 x 10(5) M-circle dot at a distance of 10 Mpc (the median distance of the sample galaxies). The velocity resolution of the data is 1.4 km s(-1). One of the main science goals of the survey is the detection of cold accreting gas in the outskirts of the sample galaxies. The sample was selected to cover a range in H I masses from 10(7) M-circle dot to almost 10(11) M-circle dot in order to optimally sample possible accretion scenarios and environments. The distance to the sample galaxies ranges from 3 to 23 Mpc. In this paper, we present the sample selection, survey design, and observation and reduction procedures. We compared the integrated H I fluxes based on the MeerKAT data with those derived from single-dish measurement and find good agreement, indicating that our MeerKAT observations are recovering all flux. We present H I moment maps of the entire sample based on the first ten percent of the survey data, and find that a comparison of the zeroth- and second-moment values shows a clear separation in the physical properties of the H I between areas with star formation and areas without related to the formation of a cold neutral medium. Finally, we give an overview of the H I-detected companion and satellite galaxies in the 30 fields, five of which have not previously been cataloged. We find a clear relation between the number of companion galaxies and the mass of the main target galaxy.
  • Search for high energy 5.5 MeV solar axions with the complete Borexino dataset
    Vogelaar, R. Bruce (2025-10-21)
    Abstract A search for solar axions and axion-like particles produced in the p + d → 3 He + A ( 5.5 MeV ) reaction was performed using the complete dataset of the Borexino detector (3995 days of measurement live-time). The following interaction processes have been considered: axion decay into two photons ( A → 2 γ ) , inverse Primakoff conversion on nuclei ( A + Z → γ + Z ), the Compton conversion of axions to photons ( A + e → e + γ ) and the axio-electric effect ( A + e + Z → e + Z ). Model-independent limits on product of axion–photon ( g A γ ), axion–electron ( g Ae ), and isovector axion–nucleon ( g 3 A N ) couplings are obtained: | g A γ × g 3 A N | ≤ 2.3 × 10 - 11 GeV - 1 and | g Ae × g 3 A N | ≤ 1.9 × 10 - 13 at m A < 1 MeV (90% c.l.). The Borexino results exclude new large regions of g A γ , and g Ae coupling constants and axion masses m A , and leads to constraints on the products | g A γ × m A | and | g Ae × m A | for the KSVZ- and the DFSZ-axion models.
  • Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA
    Kolesnikov, Egor S.; Xiong, Yeyue; Onufriev, Alexey V. (American Chemical Society, 2024-09-16)
    The ion atmosphere surrounding highly charged biomolecules, such as nucleic acids, is crucial for their dynamics, structure, and interactions. Here, we develop an approach for the explicit treatment of ions within an implicit solvent framework suitable for atomistic simulations of biomolecules. The proposed implicit solvent/explicit ions model, GBION, is based on a modified generalized Born (GB) model; it includes separate, modified GB terms for solute-ion and ion-ion interactions. The model is implemented in the AMBER package (version 24), and its performance is thoroughly investigated in atomistic molecular dynamics (MD) simulations of double-stranded DNA on a microsecond time scale. The aggregate characteristics of monovalent (Na+ and K+) and trivalent (Cobalt Hexammine, CoHex(3+)) counterion distributions around double-stranded DNA predicted by the model are in reasonable agreement with the experiment (where available), all-atom explicit water MD simulations, and the expectation from the Manning condensation theory. The radial distributions of monovalent cations around DNA are reasonably close to the ones obtained using the explicit water model: expressed in units of energy, the maximum deviations of local ion concentrations from the explicit solvent reference are within 1 k(B)T, comparable to the corresponding deviations expected between different established explicit water models. The proposed GBION model is able to simulate DNA fragments in a large volume of solvent with explicit ions with little additional computational overhead compared with the fully implicit GB treatment of ions. Ions simulated using the developed model explore conformational space at least 2 orders of magnitude faster than in the explicit solvent. These advantages allowed us to observe and explore an unexpected "stacking" mode of DNA condensation in the presence of trivalent counterions (CoHex(3+)) that was revealed by recent experiments.
  • Noninvertible symmetries in 2D from type IIB string theory
    Yu, Xingyang (American Physical Society, 2024-09-10)
    We propose a top-down approach to noninvertible symmetries in two-dimensional quantum field theories and their three-dimensional (3D) associated symmetry topological field theories. We focus on the gauge theory engineered on D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to derive the symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity under dimensional reduction. We also identify branes behind the noninvertible topological lines by dimensionally reducing their world volume actions. The action of noninvertible lines on charged local operators is then realized as the Hanany-Witten transition.
  • Holographic phenomenology via overlapping degrees of freedom
    Friedrich, Oliver; Cao, Chunjun; Carroll, Sean M.; Cheng, Gong; Singh, Ashmeet (IOP Publishing, 2024-10-03)
    The holographic principle suggests that regions of space contain fewer physical degrees of freedom than would be implied by conventional quantum field theory. Meanwhile, in Hilbert spaces of large dimension 2n, it is possible to define N >> n Pauli algebras that are nearly anti-commuting (but not quite) and which can be thought of as 'overlapping degrees of freedom'. We propose to model the phenomenology of holographic theories by allowing field-theory modes to be overlapping, and derive potential observational consequences. In particular, we build a Fermionic quantum field whose effective degrees of freedom approximately obey area scaling and satisfy a cosmic Bekenstein bound, and compare predictions of that model to cosmic neutrino observations. Our implementation of holography implies a finite lifetime of plane waves, which depends on the overall UV cutoff of the theory. To allow for neutrino flux from blazar TXS 0506+056 to be observable, our model needs to have a cutoff Lambda UV less than or similar to 500 Lambda LHC. This is broadly consistent with current bounds on the energy spectrum of cosmic neutrinos from IceCube, but high energy neutrinos are a potential challenge for our model of holography. We motivate our construction via quantum mereology, i.e. using the idea that EFT degrees of freedom should emerge from an abstract theory of quantum gravity by finding quasi-classical Hilbert space decompositions. We also discuss how to extend the framework to Bosons. Finally, using results from random matrix theory we derive an analytical understanding of the energy spectrum of our theory. The numerical tools used in this work are publicly available within the GPUniverse package, https://github.com/OliverFHD/GPUniverse.
  • Vanishing conditions for higher order couplings in heterotic theories
    Gray, James (American Physical Society, 2024-10-04)
    For compactifications of heterotic string theory, we elucidate simple cohomological conditions that lead to the vanishing of superpotential n-point couplings for all n. These results generalize some vanishing theorems for Yukawa couplings that have previously appeared in the literature to all higher orders. In some cases, these results are enough to show that certain fields do not appear in the perturbative superpotential at all. We illustrate our discussion with a number of concrete examples. In some cases, our results can be confirmed by showing that symmetries indeed forbid the couplings that vanish. In many, however, no such symmetries are known to exist and, as such, the infinite sets of vanishing couplings that are found are surprising from a four-dimensional perspective.
  • Ultrafast Optically Controlled Power Switch: A General Design and Demonstration With 3.3 kV SiC MOSFET
    Yang, Xin; Shi, Guannan; Jin, Liyang; Qin, Yuan; Porter, Matthew; Jia, Xiaoting; Dong, Dong; Shao, Linbo; Zhang, Yuhao (IEEE, 2024-12-01)
    Optically controlled high-voltage power devices are desirable for grid and renewable energy applications. This work proposes a hybrid device consisting of a high-voltage, high-power transistor, and two low-voltage, low-power photodiodes (PDs) to achieve the optically controlled power switching. This hybrid device is driven by complementary optical signals, which are applied to two PDs to charge and discharge the capacitances of the power device in the turn-OFF and turn-ON transients. This design can fast switch unipolar devices with an ultralow optical power, as only the driver signals are optically modulated but the device current is not photogenerated. We experimentally demonstrate this design using two InGaAs PDs to switch a 3.3 kV SiC MOSFET, the highest-voltage industrial unipolar device available. Under an optical power of 21.7 mW applied on each PD, 1500 V/3 A hard-switching is demonstrated with a rise time and fall time of 152 and 215 ns, respectively. This represents the highest switching voltage, fastest switching speed, and highest ratio between the power capacity and optical power reported in optically controlled unipolar power switches. The switching dynamics are also modeled to project the frequency scalability of this hybrid device. In addition to achieving a record performance, this general device design is also applicable to the future development of integrated optics for power electronics.
  • Dilaton shifts, probability measures, and decomposition
    Sharpe, Eric (IOP Publishing, 2024-11-22)
    In this paper we discuss dilaton shifts (Euler counterterms) arising in decomposition of two-dimensional quantum field theories with higher-form symmetries. Relative shifts between universes are fixed by locality and take a universal form, reflecting underlying (noninvertible, quantum) symmetries. The first part of this paper constructs a general formula for such dilaton shifts, and discusses related computations. In the second part of this paper, we comment on the relation between decomposition and ensembles.
  • Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent
    Forouzesh, Negin; Ghafouri, Fatemeh; Tolokh, Igor S.; Onufriev, Alexey V. (American Chemical Society, 2024-12-10)
    Accuracy of binding free energy calculations utilizing implicit solvent models is critically affected by parameters of the underlying dielectric boundary, specifically, the atomic and water probe radii. Here, a multidimensional optimization pipeline is used to find optimal atomic radii, specifically for binding calculations in the implicit solvent. To reduce overfitting, the optimization target includes separate, weighted contributions from both binding and hydration free energies. The resulting five-parameter radii set, OPT_BIND5D, is evaluated against experiment for binding free energies of 20 host-guest (H-G) systems, unrelated to the types of structures used in the training. The resulting accuracy for this H-G test set (root mean square error of 2.03 kcal/mol, mean signed error of -0.13 kcal/mol, mean absolute error of 1.68 kcal/mol, and Pearson's correlation of r = 0.79 with the experimental values) is on par with what can be expected from the fixed charge explicit solvent models. Best agreement with the experiment is achieved when the implicit salt concentration is set equal or close to the experimental conditions.
  • Unified genus-1 potential and a parametric perturbative/nonperturbative relation
    Cavusoglu, Atakan; Kozcaz, Can; Tezgin, Kemal (American Physical Society, 2024-12-02)
    We study a parametric deformation of the unified genus-1 anharmonic potential and derive a parametric form of perturbative/nonperturbative (P/NP) relation, applicable across all parameter values. We explicitly demonstrate that the perturbative expansion around the perturbative saddle is sufficient to generate all the nonperturbative information in these systems. Our results confirm the known results in the literature, where the cubic and quartic anharmonic potentials are reproduced under extreme parameter values, and go beyond these known results by developing the nonperturbative function of real and complex instantons solely from perturbative data.
  • Photometry and kinematics of dwarf galaxies from the Apertif H I survey
    Siljeg, B.; Adams, E. A. K.; Fraternali, F.; Hess, K. M.; Oosterloo, T. A.; Marasco, A.; Adebahr, B.; Denes, H.; Garrido, J.; Lucero, D. M.; Pina, P. E. Mancera; Moss, V. A.; Parra-Royon, M.; Ponomareva, A. A.; Sanchez-Exposito, S.; van der Hulst, J. M. (EDP Sciences, 2024-12-13)
    Context. Understanding the dwarf galaxy population in low density environments (in the field) is crucial for testing the current Lambda Cold Dark Matter cosmological model. The increase in diversity toward low-mass galaxies is seen as an increase in the scatter of scaling relations, such as the stellar mass-size and the baryonic Tully-Fisher relation (BTFR), and is also demonstrated by recent in-depth studies of an extreme sub-class of dwarf galaxies with low surface brightnesses but large physical sizes called ultra-diffuse galaxies (UDGs). Aims. We aim to select dwarf galaxies independent of their stellar content and to make a detailed study of their gas and stellar properties. We selected galaxies from the APERture Tile In Focus (Apertif) H I survey and applied a constraint on their i-band absolute magnitude in order to exclude high-mass systems. The sample consists of 24 galaxies, 22 of which are resolved in H I by at least three beams, and they span H I mass ranges of 8.6 less than or similar to log(M-H I/M-circle dot) less than or similar to 9.7 and a stellar mass range of 8.0 less than or similar to log(M-star/M-circle dot)less than or similar to 9.7 (with only three galaxies having log (M-star/M-circle dot) > 9). Methods. We determined the geometrical parameters of the H I and stellar disks, built kinematic models from the H I data using (3D)Barolo, and extracted surface brightness profiles in the g-, r-, and i-bands from the Pan-STARRS 1 photometric survey. We used these measurements to place our galaxies on the stellar mass-size relation and the BTFR, and we compared them with other samples from the literature. Results. We find that at a fixed stellar mass, our H I-selected dwarfs have larger optical effective radii than isolated optically selected dwarfs from the literature, and we found misalignments between the optical and H I morphologies for some of our sample. For most of our galaxies, we used the H I morphology to determine their kinematics, and we stress that deep optical observations are needed to trace the underlying stellar disks. Standard dwarfs in our sample follow the same BTFR of high-mass galaxies, whereas UDGs are slightly offset toward lower rotational velocities, in qualitative agreement with results from previous studies. Finally, our sample features a fraction (25%) of dwarf galaxies in pairs that is significantly larger with respect to previous estimates based on optical spectroscopic data.
  • Mentalizing, epistemic trust and interpersonal problems in emotion regulation: A sequential path analysis across common mental health disorders and community control samples
    Kumpasoglu, Guler Beril; Saunders, Rob; Campbell, Chloe; Nolte, Tobias; Montague, P. Read; Pilling, Steve; Leibowitz, Judy; Fonagy, Peter (Elsevier, 2025-03-01)
    Background: Emotion regulation is a crucial function implicated in multiple mental health disorders; understanding the mechanisms by which emotion regulation has such impact is essential. Mentalizing has been posited as a prerequisite for effective emotion regulation. The current study aims to examine the roles of epistemic trust and interpersonal problems in driving the association between mentalizing and emotion regulation, contrasting clinical and non-clinical populations. Method: A total of 652 individuals (296 clinical and 356 community control) were employed. Sequential mediation analysis was used to examine the role of epistemic stances and interpersonal problems in the mentalizing-emotion regulation link, and moderated mediation analysis was conducted to identify group differences in these pathways. Results: Ineffective mentalizing was associated with emotion dysregulation and interpersonal problems. Higher levels of epistemic credulity and mistrust were associated with ineffective mentalizing, interpersonal problems, and emotion dysregulation. Sequential mediation analysis indicated that disruptions in epistemic trust (epistemic mistrust and credulity) and interpersonal problems partially mediated the relationship between inadequate mentalizing and emotion dysregulation, with these pathways being consistent across both clinical and control groups. The pathways including epistemic trust were not significant. Limitations: The study's limitations include a simplified theoretical model, a cross-sectional design preventing causal inference, and sample recruitment methods possibly limiting generalizability. Conclusions: These findings suggest a potential mechanism connecting mentalizing, disruptions in epistemic trust, interpersonal problems, and emotion regulation, to illuminate a crucial aspect of psychological functioning. These results emphasize the significance of social-communicative aspect in clinical outcomes.
  • The metamorphosis of the Type Ib SN 2019yvr: late-time interaction
    Ferrari, Lucia; Folatelli, Gaston; Kuncarayakti, Hanindyo; Stritzinger, Maximilian; Maeda, Keiichi; Bersten, Melina; Roman Aguilar, Lili M.; Saez, M. Manuela; Dessart, Luc; Lundqvist, Peter; Mazzali, Paolo; Nagao, Takashi; Ashall, Chris; Bose, Subhash; Brennan, Sean J.; Cai, Yongzhi; Handberg, Rasmus; Holmbo, Simon; Karamehmetoglu, Emir; Pastorello, Andrea; Reguitti, Andrea; Anderson, Joseph; Chen, Ting-Wan; Galbany, Lluis; Gromadzki, Mariusz; Gutierrez, Claudia P.; Inserra, Cosimo; Kankare, Erkki; Mueller Bravo, Tomas E.; Mattila, Seppo; Nicholl, Matt; Pignata, Giuliano; Sollerman, Jesper; Srivastav, Shubham; Young, David R. (Oxford University Press, 2024-12-28)
    We present observational evidence of late-time interaction between the ejecta of the hydrogen-poor Type Ib supernova (SN) 2019yvr and hydrogen-rich circumstellar material (CSM), similar to the Type Ib SN 2014C. A narrow H alpha emission line appears simultaneously with a break in the light-curve decline rate at around 80-100d after explosion. From the interaction delay and the ejecta velocity, under the assumption that the CSM is detached from the progenitor, we estimate the CSM inner radius to be located at similar to 6.5-9.1 x 10(15) cm. The H alpha emission line persists throughout the nebular phase at least up to +420d post-explosion, with a full width at half maximum of similar to 2000 km s(-1). Assuming a steady mass-loss, the estimated mass-loss rate from the luminosity of the H alpha line is similar to 3-7 x 10(-5) M-circle dot yr(-1). From hydrodynamical modelling and analysis of the nebular spectra, we find a progenitor He-core mass of 3-4 M-circle dot, which would imply an initial mass of 13-15 M-circle dot. Our result supports the case of a relatively low-mass progenitor possibly in a binary system as opposed to a higher mass single star undergoing a luminous blue variable phase.
  • Modeling and Simulation of Trapped Ion Quantum Repeaters and Networks
    Jain, Charu; Chan, Chuen Hei; Kissel, Ezra; Wu, Wenji; Monga, Inder (ACM, 2025-09-08)
    This paper explores the design and implementation of trapped-ion quantum repeaters and networks using modeling and simulation. We aim to quantitatively understand the practical architecture design and resource requirements of trapped-ion entanglement-based quantum repeater paradigms. Our simulation results explore entanglement rate and fidelity as key performance metrics, and we discuss the major challenges for practical deployment of quantum networks and future directions for research and development in order to meet these challenges.
  • Modeling and Simulation of All-photonic Quantum Repeaters and Networks
    Chan, Chuen Hei; Jain, Charu; Kissel, Ezra; Wu, Wenji; Barnes, Edwin; Economou, Sophia E.; Monga, Inder (ACM, 2025-09-08)
    This paper explores the design and implementation of all-photonic quantum repeaters and networks using modeling and simulation. We aim to quantitatively understand the practical architecture design and resource requirements of all-photonic entanglement-based quantum repeater paradigms.
  • Nucleon Decays into Light New Particles in Neutrino Detectors
    Heeck, Julian; Shoemaker, Ian M. (American Physical Society, 2025-09-11)
    Proton and neutron decays into light new particles X can drastically change the experimental signatures and benefit from the complementarity of large water-Cherenkov neutrino detectors such as Super- and Hyper-Kamiokande and tracking detectors such as JUNO and DUNE. The proton decays p → 𝓁⁺X and p → π⁺X with mX near phase-space closure lead to charged particles below the Cherenkov threshold, rendering them practically invisible in Super- and Hyper-Kamiokande but not in JUNO and DUNE, which are therefore uniquely positioned for these baryon-number-violating signatures despite their smaller size. As an additional signature, such nucleon decays in the Earth can produce a sizable flux of X particles in underground detectors.We present a simple model in which nucleons decay into sub-GeV sterile neutrinos that subsequently decay through active-sterile neutrino mixing, with a promisingly large number of events in Super-Kamiokande even in the seesaw-motivated parameter space.
  • Caudate serotonin signaling during social exchange distinguishes essential tremor and Parkinson’s disease patients
    Hartle, Alec E.; Kishida, Kenneth T.; Sands, L. Paul; Batten, Seth R.; Barbosa, Leonardo S.; Bang, Dan; Lohrenz, Terry; White, Jason P.; Sohrabi, Arian K.; Calafiore, Rebecca L.; DiFeliceantonio, Alexandra G.; Laxton, AdrianW.; Tatter, Stephen B.; Witcher, Mark R.; Montague, P. Read; Howe, W. Matt (Springer Nature, 2025-09-02)
    Dynamic changes in dopamine, noradrenaline, and serotonin release are believed to causally contribute to the neural computations that support reward-based decision making. Accordingly, changes in signaling by these systems are hypothesized to underwrite multiple cognitive and behavioral symptoms observed in many neurological disorders. Here,we characterize the release of these neurotransmitters measured concurrently in the caudate of patients with Parkinson’s disease or essential tremor undergoing deep brain stimulation surgery as they played a social exchange game. We show that violations in the expected value of monetary offers are encoded by opponent patterns of dopamine and serotonin release in essential tremor, but not Parkinson’s disease, patients. We also demonstrate that these changes in serotonin signaling comprise a neurochemical boundary that subsegments these two neuromotor diseases. Our combined results point to a neural signature of altered reward processing that can be used to understand the signaling deficiencies that underwrite these diseases.
  • Cholesterol modulates membrane elasticity via unified biophysical laws
    Kumarage, Teshani; Gupta, Sudipta; Morris, Nicholas B.; Doole, Fathima T.; Scott, Haden L.; Stingaciu, Laura-Roxana; Pingali, Sai Venkatesh; Katsaras, John; Khelashvili, George; Doktorova, Milka; Brown, Michael F.; Ashkar, Rana (Springer, 2025-07)
    Cholesterol and lipid unsaturation underlie a balance of opposing forces that features prominently in adaptive cell responses to diet and environmental cues. These competing factors have resulted in contradictory observations of membrane elasticity across different measurement scales, requiring chemical specificity to explain incompatible structural and elastic effects. Here, we demonstrate that - unlike macroscopic observations - lipid membranes exhibit a unified elastic behavior in the mesoscopic regime between molecular and macroscopic dimensions. Using nuclear spin techniques and computational analysis, we find that mesoscopic bending moduli follow a universal dependence on the lipid packing density regardless of cholesterol content, lipid unsaturation, or temperature. Our observations reveal that compositional complexity can be explained by simple biophysical laws that directly map membrane elasticity to molecular packing associated with biological function, curvature transformations, and protein interactions. The obtained scaling laws closely align with theoretical predictions based on conformational chain entropy and elastic stress fields. These findings provide unique insights into the membrane design rules optimized by nature and unlock predictive capabilities for guiding the functional performance of lipid-based materials in synthetic biology and real-world applications.
  • Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning
    Abud, A. A.; Acciarri, R.; Acero, M. A.; Adames, M. R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; Aduszkiewicz, A.; Aguilar, J.; Akbar, F.; Alemanno, F.; Alex, N. S.; Allison, K.; Alrashed, M.; Alton, A.; Alvarez, R.; Alves, T.; Aman, A.; Amar, H.; Amedo, P.; Anderson, J.; Andreopoulos, C.; Andreotti, M.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Anjarazafy, F.; Antic, D.; Antoniassi, M.; Antonova, M.; Aranda-Fernandez, A.; Arellano, L.; Arrieta Diaz, E.; Arroyave, M. A.; Asaadi, J.; Ashkenazi, A.; Asner, D.; Asquith, L.; Atkin, E.; Auguste, D.; Aurisano, A.; Aushev, V.; Autiero, D.; Ávila Gómez, D.; Azam, M. B.; Azfar, F.; Back, A.; Back, H.; Back, J. J.; Bagaturia, I.; Bagby, L.; Baigarashev, D.; Balasubramanian, S.; Balboni, A.; Baldi, P.; Baldini, W.; Baldonedo, J.; Baller, B.; Bambah, B.; Banerjee, R.; Barao, F.; Barbu, D.; Barenboim, G.; Barham Alzás, P.; Barker, G. J.; Barkhouse, W.; Barr, G.; Barranco Monarca, J.; Barros, A.; Barros, N.; Barrow, D.; Barrow, J. L.; Basharina-Freshville, A.; Bashyal, A.; Basque, V.; Basu, D.; Batchelor, C.; Bathe-Peters, L.; Battat, J. B. R.; Battisti, F.; Bay, F.; Bazetto, M. C. Q.; Bazo Alba, J. L. L.; Beacom, J. F.; Bechetoille, E.; Behera, B.; Belchior, E.; Bell, B.; Bell, G.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benitez Montiel, C.; Benjamin, D.; Bento Neves, F.; Berger, J.; Berkman, S.; Bernal, J.; Bernardini, P.; Bersani, A.; Bertolini, E.; Bertolucci, S.; Betancourt, M.; Betancur Rodríguez, A.; Bezawada, Y.; Bezerra, A. T.; Bhat, A.; Bhatnagar, V.; Bhatt, J.; Bhattacharjee, M.; Bhattacharya, M.; Bhuller, S.; Bhuyan, B.; Biagi, S.; Bian, J.; Biery, K.; Bilki, B.; Bishai, M.; Blake, A.; Blaszczyk, F. D.; Blazey, G. C.; Blucher, E.; Bogart, B.; Bogenschuetz, J.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bomben, L.; Bonesini, M.; Bonilla-Diaz, C.; Booth, A.; Boran, F.; Borges Merlo, R.; Bostan, N.; Botogoske, G.; Bottino, B.; Bouet, R.; Boza, J.; Bracinik, J.; Brahma, B.; Brailsford, D.; Bramati, F.; Branca, A.; Brandt, A.; Bremer, J.; Brew, C.; Brice, S. J.; Brio, V.; Brizzolari, C.; Bromberg, C.; Brooke, J.; Bross, A.; Brunetti, G.; Brunetti, M. B.; Buchanan, N.; Budd, H.; Buergi, J.; Bundock, A.; Burgardt, D.; Butchart, S.; Caceres V., G.; Cai, T.; Calabrese, R.; Calabrese, R.; Calcutt, J.; Calivers, L.; Calvo, E.; Caminata, A.; Camino, A. F.; Campanelli, W.; Campani, A.; Campos Benitez, A.; Canci, N.; Capó, J.; Caracas, I.; Caratelli, D.; Carber, D.; Carceller, J. M.; Carini, G.; Carlus, B.; Carneiro, M. F.; Carniti, P.; Caro Terrazas, I.; Carranza, H.; Carrara, N.; Carroll, L.; Carroll, T.; Carter, A.; Casarejos, E.; Casazza, D.; Castaño Forero, J. F.; Castaño, F. A.; Castillo, A.; Castromonte, C.; Catano-Mur, E.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cerna, C.; Cervelli, A.; Cervera Villanueva, A.; Chalifour, M.; Chappell, A.; Chatterjee, A.; Chauhan, B.; Chen, H.; Chen, M.; Chen, W. C.; Chen, Y.; Chen, Z.; Cherdack, D.; Chhibra, S. S.; Chi, C.; Chiapponi, F.; Chirco, R.; Chitirasreemadam, N.; Cho, K.; Choate, S.; Choi, G.; Chokheli, D.; Chong, P. S.; Chowdhury, B.; Christian, D.; Chung, M.; Church, E.; Cicala, M. F.; Cicerchia, M.; Cicero, V.; Ciolini, R.; Clarke, P.; Cline, G.; Cocco, A. G.; Coelho, J. A. B.; Cohen, A.; Collazo, J.; Collot, J.; Conrad, J. M.; Convery, M.; Conway, K.; Copello, S.; Cova, P.; Cox, C.; Cremonesi, L.; Crespo-Anadón, J. I.; Crisler, M.; Cristaldo, E.; Crnkovic, J.; Crone, G.; Cross, R.; Cudd, A.; Cuesta, C.; Cui, Y.; Curciarello, F.; Cussans, D.; Dai, J.; Dalager, O.; Dallaway, W.; D’Amico, R.; da Motta, H.; Dar, Z. A.; Darby, R.; Da Silva Peres, L.; David, Q.; Davies, G. S.; Davini, S.; Dawson, J.; De Aguiar, R.; De Almeida, P.; Debbins, P.; Decowski, M. P.; de Gouvêa, A.; De Holanda, P. C.; De Jong, P.; Del Amo Sanchez, P.; De Lauretis, G.; Delbart, A.; Delepine, D.; Delgado, M.; Dell’Acqua, A.; Delle Monache, G.; Delmonte, N.; De Lurgio, P.; Demario, R.; De Matteis, G.; de Mello Neto, J. R. T.; DeMuth, D. M.; Dennis, S.; Densham, C.; Denton, P.; Deptuch, G. W.; De Roeck, A.; De Romeri, V.; Detje, J. P.; Devine, J.; Dharmapalan, R.; Dias, M.; Diaz, A.; Díaz, J. S.; Díaz, F.; Di Capua, F.; Di Domenico, A.; Di Domizio, S.; Di Falco, S.; Di Giulio, L.; Ding, P.; Di Noto, L.; Diociaiuti, E.; Di Silvestre, V.; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Z.; Dolan, S.; Dolce, M.; Dolek, F.; Dolinski, M. J.; Domenici, D.; Donati, S.; Donon, Y.; Doran, S.; Douglas, D.; Doyle, T. A.; Drielsma, F.; Duarte, L.; Duchesneau, D.; Duffy, K.; Dugas, K.; Dunne, P.; Dutta, B.; Duyang, H.; Dwyer, D. A.; Dyshkant, A. S.; Dytman, S.; Eads, M.; Earle, A.; Edayath, S.; Edmunds, D.; Eisch, J.; Emark, W.; Englezos, P.; Ereditato, A.; Erjavec, T.; Escobar, C. O.; Evans, J. J.; Ewart, E.; Ezeribe, A. C.; Fahey, K.; Falcone, A.; Fani’, M.; Farnese, C.; Farrell, S.; Farzan, Y.; Felix, J.; Feng, Y.; Fernandez-Martinez, E.; da Silva, M. F.; Ferry, G.; Fialova, E.; Fields, L.; Filip, P.; Filkins, A.; Filthaut, F.; Fiorillo, G.; Fiorini, M.; Fogarty, S.; Foreman, W.; Fowler, J.; Franc, J.; Francis, K.; Franco, D.; Franklin, J.; Freeman, J.; Fried, J.; Friedland, A.; Fucci, M.; Fuess, S.; Furic, I. K.; Furman, K.; Furmanski, A. P.; Gaba, R.; Gabrielli, A.; Gago, A. M.; Galizzi, F.; Gallagher, H.; Galli, M.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Gandhi, R.; Ganguly, S.; Gao, F.; Gao, S.; Garcia-Gamez, D.; García-Peris, M. Á.; Gardim, F.; Gardiner, S.; Gastler, D.; Gauch, A.; Gauzzi, P.; Gazzana, S.; Ge, G.; Geffroy, N.; Gelli, B.; Gent, S.; Gerlach, L.; Ghosh, A.; Giammaria, T.; Gibin, D.; Gil-Botella, I.; Gilligan, S.; Gioiosa, A.; Giovannella, S.; Giri, A. K.; Giugliano, C.; Giusti, V.; Gnani, D.; Gogota, O.; Gollapinni, S.; Gollwitzer, K.; Gomes, R. A.; Gomez Bermeo, L. V.; Gomez Fajardo, L. S.; Gonzalez-Diaz, D.; Goodman, M. C.; Goswami, S.; Gotti, C.; Goudeau, J.; Goudzovski, E.; Grace, C.; Gramellini, E.; Gran, R.; Granados, E.; Granger, P.; Grant, C.; Gratieri, D. R.; Grauso, G.; Green, P.; Greenberg, S.; Greer, J.; Griffith, W. C.; Grzelak, K.; Gu, L.; Gu, W.; Guarino, V.; Guarise, M.; Guenette, R.; Guerzoni, M.; Guffanti, D.; Guglielmi, A.; Guo, B.; Guo, F. Y.; Gupta, V.; Gurung, G.; Gutierrez, D.; Guzowski, P.; Guzzo, M. M.; Gwon, S.; Habig, A.; Haegel, L.; Hagaman, L.; Hahn, A.; Hakenmüller, J.; Hamernik, T.; Hamilton, P.; Hancock, J.; Handley, M.; Happacher, F.; Harris, D. A.; Hart, A. L.; Hartnell, J.; Hartnett, T.; Harton, J.; Hasegawa, T.; Hasnip, C. M.; Hatcher, R.; Hawkins, S.; Hays, J.; He, M.; Heavey, A.; Heeger, K. M.; Heindel, A.; Heise, J.; Hellmuth, P.; Henderson, L.; Herner, K.; Hewes, V.; Higuera, A.; Hilgenberg, C.; Himmel, A.; Hinkle, E.; Hirsch, L. R.; Ho, J.; Hoefken Zink, J.; Hoff, J.; Holin, A.; Holvey, T.; Hong, C.; Hoppe, E.; Horiuchi, S.; Horton-Smith, G. A.; Hosokawa, R.; Houdy, T.; Howard, B.; Howell, R.; Hristova, I.; Hronek, M. S.; Huang, J.; Huang, R. G.; Huang, X.; Hulcher, Z.; Iles, G.; Ilic, N.; Iliescu, A. M.; Illingworth, R.; Ingratta, G.; Ioannisian, A.; Irwin, B.; Ismerio Oliveira, M.; Jackson, C. M.; Jain, V.; James, E.; Jang, W.; Jargowsky, B.; Jena, D.; Jentz, I.; Ji, X.; Jiang, C.; Jiang, J.; Jipa, A.; Jo, J. H.; Joaquim, F. R.; Johnson, W.; Jollet, C.; Jones, R.; Jovancevic, N.; Judah, M.; Jung, C. K.; Jung, K. Y.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A. C.; Kadenko, I.; Kalikulov, O.; Kalra, D.; Kandemir, M.; Kaplan, D. M.; Karagiorgi, G.; Karaman, G.; Karcher, A.; Karyotakis, Y.; Kasetti, S. P.; Kashur, L.; Kauther, A.; Kazaryan, N.; Ke, L.; Kearns, E.; Keener, P. T.; Kelly, K. J.; Keloth, R.; Kemp, E.; Kemularia, O.; Kermaidic, Y.; Ketchum, W.; Kettell, S. H.; Khan, N.; Khvedelidze, A.; Kim, D.; Kim, J.; Kim, M. J.; Kim, S.; King, B.; King, M.; Kirby, M.; Kish, A.; Klein, J.; Kleykamp, J.; Klustova, A.; Kobilarcik, T.; Koch, L.; Koehler, K.; Koerner, L. W.; Koh, D. H.; Kordosky, M.; Kosc, T.; Kostelecký, V. A.; Kothekar, K.; Kotler, I.; Kovalcuk, M.; Krah, W.; Kralik, R.; Kramer, M.; Kreczko, L.; Krennrich, F.; Kroupova, T.; Kubota, S.; Kubu, M.; Kudryavtsev, V. A.; Kufatty, G.; Kuhlmann, S.; Kumar, J.; Kumar, P.; Kumar, P.; Kumaran, S.; Kunzmann, J.; Kuravi, R.; Kus, V.; Kutter, T.; Kvasnicka, J.; Labree, T.; Lackey, T.; Lalău, I.; Lambert, A.; Land, B. J.; Lane, C. E.; Lane, N.; Lang, K.; Langford, T.; Langstaff, M.; Lanni, F.; Larkin, J.; Lasorak, P.; Last, D.; Laundrie, A.; Laurenti, G.; Lavaut, E.; Laycock, P.; Lazanu, I.; LaZur, R.; Lazzaroni, M.; Le, T.; Leardini, S.; Learned, J.; LeCompte, T.; Lehmann Miotto, G.; Lehnert, R.; Leitner, M.; Lemoine, H.; Leon Silverio, D.; Lepin, L. M.; Li, J.-Y.; Li, S. W.; Li, Y.; Liao, H.; Lima, R.; Lin, C. S.; Lindebaum, D.; Linden, S.; Lineros, R. A.; Lister, A.; Littlejohn, B. R.; Liu, H.; Liu, J.; Liu, Y.; Lockwitz, S.; Lomidze, I.; Long, K.; Lopes, T. V.; Lopez, J.; López de Rego, I.; López-March, N.; LoSecco, J. M.; Louis, W. C.; Lozano Sanchez, A.; Lu, X.-G.; Luk, K. B.; Luo, X.; Luppi, E.; Machado, A. A.; Machado, P.; Macias, C. T.; Macier, J. R.; MacMahon, M.; Magill, S.; Magueur, C.; Mahn, K.; Maio, A.; Major, A.; Majumdar, K.; Malige, A.; Mameli, S.; Man, M.; Mandujano, R. C.; Maneira, J.; Manly, S.; Mann, A.; Manolopoulos, K.; Manrique Plata, M.; Manthey Corchado, S.; Manyam, V. N.; Manzanillas-Velez, L.; Marchan, M.; Marchionni, A.; Marciano, W.; Marfatia, D.; Mariani, C.; Maricic, J.; Marinho, F.; Marino, A. D.; Markiewicz, T.; Das Chagas Marques, F.; Marquet, C.; Marshak, M.; Marshall, C. M.; Marshall, J.; Martina, L.; Martín-Albo, J.; Martinez, N.; Martinez Caicedo, D. A.; Martinez-Casales, M.; Martínez López, F.; Martínez Miravé, P.; Martynenko, S.; Mascagna, V.; Mastbaum, A.; Masud, M.; Matichard, F.; Matteucci, G.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mawby, I.; Mayhew, F.; Mazza, R.; McAskill, T.; McConkey, N.; McFarland, K. S.; McGrew, C.; McNab, A.; McNulty, C.; Meazza, L.; Meddage, V. C. N.; Mehmood, M.; Mehta, B.; Mehta, P.; Mei, F.; Melas, P.; Mellet, L.; Mena, O.; Mendez, H.; Méndez, D. P.; Mendonca, A. P.; Menegolli, A.; Meng, G.; Mercuri, A. C. E. A.; Meregaglia, A.; Messier, M. D.; Metallo, S.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Micallef, J.; Miccoli, A.; Michna, G.; Milincic, R.; Miller, F.; Miller, G.; Miller, W.; Minotti, A.; Miralles, L.; Mironov, C.; Miryala, S.; Miscetti, S.; Mishra, C. S.; Mishra, P.; Mishra, S. R.; Mislivec, A.; Mladenov, D.; Mocioiu, I.; Mogan, A.; Mohanta, R.; Mohayai, T. A.; Mokhov, N.; Molina, J.; Molina Bueno, L.; Montagna, E.; Montanari, A.; Montanari, C.; Montanari, D.; Montanino, D.; Montaño Zetina, L. M.; Mooney, M.; Moor, A. F.; Moore, M.; Moore, Z.; Moreno, D.; Moreno-Granados, G.; Moreno-Palacios, O.; Morescalchi, L.; Moretti, R.; Morris, C.; Mossey, C.; Moura, C. A.; Mouster, G.; Mu, W.; Mualem, L.; Mueller, J.; Muether, M.; Muheim, F.; Muir, A.; Mukhamejanov, Y.; Mukhamejanova, A.; Mulhearn, M.; Munford, D.; Munteanu, L. J.; Muramatsu, H.; Muraz, J.; Murphy, M.; Murphy, T.; Muse, J.; Mytilinaki, A.; Nachtman, J.; Nagai, Y.; Nagu, S.; Naples, D.; Narita, S.; Nava, J.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nehm, A.; Nelson, J. K.; Neogi, O.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Nichol, R.; Nicolas-Arnaldos, F.; Nielsen, A.; Nikolica, A.; Nikolov, J.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Novella, P.; Nowak, A.; Nowak, J. A.; Oberling, M.; Ochoa-Ricoux, J. P.; Oh, S.; Oh, S. B.; Olivier, A.; Olson, T.; Onel, Y.; Onishchuk, Y.; Oranday, A.; Osbiston, M.; Osorio Vélez, J. A.; O’Sullivan, L.; Otiniano Ormachea, L.; Pagani, L.; Palacio, G.; Palamara, O.; Palestini, S.; Paley, J. M.; Pallavicini, M.; Palomares, C.; Pan, S.; Panareo, M.; Panda, P.; Pandey, V.; Panduro Vazquez, W.; Pantic, E.; Paolone, V.; Papadopoulou, A.; Papaleo, R.; Papoulias, D.; Paramesvaran, S.; Parke, S.; Parsa, S.; Parsa, Z.; Parveen, S.; Parvu, M.; Pasciuto, D.; Pascoli, S.; Pasqualini, L.; Pasternak, J.; Patiño Camargo, G.; Paton, J. L.; Patrick, C.; Patrizii, L.; Patterson, R. B.; Patzak, T.; Paudel, A.; Paul, J.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Peake, A.; Pec, V.; Pedreschi, E.; Peeters, S. J. M.; Pellico, W.; Pennacchio, E.; Penzo, A.; Peres, O. L. G.; Perez Gonzalez, Y. F.; Pérez-Molina, L.; Pernas, C.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Pfaff, M.; Pia, V.; Pickering, L.; Pierini, L.; Pietropaolo, F.; Pimentel, V. L.; Pinaroli, G.; Pincha, S.; Pinchault, J.; Pitts, K.; Pletcher, K.; Plows, K.; Pollack, C.; Pollmann, T.; Pompa, F.; Pons, X.; Poonthottathil, N.; Popov, V.; Poppi, F.; Porter, J.; Porto Paixão, L. G.; Potekhin, M.; Pozzato, M.; Pradhan, R.; Prakash, T.; Prest, M.; Psihas, F.; Pugnere, D.; Pullia, D.; Qian, X.; Queen, J.; Raaf, J. L.; Rabelhofer, M.; Radeka, V.; Rademacker, J.; Radics, B.; Raffaelli, F.; Rafique, A.; Raguzin, E.; Rahe, A.; Rajagopalan, S.; Rajaoalisoa, M.; Rakhno, I.; Rakotondravohitra, L.; Ralaikoto, M. A.; Ralte, L.; Ramirez Delgado, M. A.; Ramson, B.; Randriamanampisoa, S. S.; Rappoldi, A.; Raselli, G.; Rath, T.; Ratoff, P.; Ray, R.; Razafinime, H.; Razakamiandra, R. F.; Rea, E. M.; Real, J. S.; Rebel, B.; Rechenmacher, R.; Reichenbacher, J.; Reitzner, S. D.; Renner, E.; Repetto, S.; Rescia, S.; Resnati, F.; Restrepo, Diego; Reynolds, C.; Ribas, M.; Riboldi, S.; Riccio, C.; Riccobene, G.; Ricol, J. S.; Rigan, M.; Rikalo, A.; Rincón, E. V.; Ritchie-Yates, A.; Ritter, S.; Rivera, D.; Robert, A.; Roberts, A.; Robles, E.; Rocabado Rocha, J. L.; Roda, M.; Rodrigues, M. J. O.; Rondon, J. R.; Rosauro-Alcaraz, S.; Rosier, P.; Ross, D.; Rossella, M.; Rossi, M.; Roy, N.; Roy, P.; Roy, P.; Rubbia, C.; Rudik, D.; Ruggeri, A.; Ruiz Ferreira, G.; Rushiya, K.; Russell, B.; Sacerdoti, S.; Saduyev, N.; Sahoo, S. K.; Sahu, N.; Sakhiyev, S.; Sala, P.; Salmoria, G.; Samanta, S.; Samios, N.; Sanchez, M. C.; Sánchez Bravo, A.; Sánchez-Castillo, A.; Sanchez-Lucas, P.; Sanders, D. A.; Sanfilippo, S.; Santoro, D.; Saoulidou, N.; Sapienza, P.; Sarcevic, I.; Sarra, I.; Savage, G.; Savinov, V.; Scanavini, G.; Scaramelli, A.; Scarff, A.; Schefke, T.; Schellman, H.; Schifano, S.; Schlabach, P.; Schmitz, D.; Schneider, A. W.; Scholberg, K.; Schukraft, A.; Schuld, B.; Schwartz, S.; Segade, A.; Segreto, E.; Senise, C. R.; Sensenig, J.; Seppela, D.; Shaevitz, M. H.; Shanahan, P.; Sharma, P.; Kumar, R.; Sharma Poudel, S.; Shaw, K.; Shaw, T.; Shchablo, K.; Shen, J.; Shepherd-Themistocleous, C.; Shi, J.; Shi, W.; Shin, S.; Shivakoti, S.; Shmakov, A.; Shoemaker, I.; Shooltz, D.; Shrock, R.; Siden, M.; Silber, J.; Simard, L.; Sinclair, J.; Sinev, G.; Singh, Jaydip; Singh, J.; Singh, L.; Singh, P.; Singh, V.; Singh Chauhan, S.; Sipos, R.; Sironneau, C.; Sirri, G.; Siyeon, K.; Skarpaas, K.; Smedley, J.; Smith, J.; Smith, P.; Smolik, J.; Smy, M.; Snape, M.; Snider, E. L.; Snopok, P.; Soares Nunes, M.; Sobel, H.; Soderberg, M.; Solano Salinas, C. J.; Söldner-Rembold, S.; Solomey, N.; Solovov, V.; Sondheim, W. E.; Sorel, M.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Souza Correia, D.; Spinella, F.; Spitz, J.; Spooner, N. J. C.; Stalder, D.; Stancari, M.; Stanco, L.; Steenis, J.; Stein, R.; Steiner, H. M.; Steklain Lisbôa, A. F.; Stewart, J.; Stillwell, B.; Stock, J.; Stokes, T.; Strait, M.; Strauss, T.; Strigari, L.; Stuart, A.; Suarez, J. G.; Subash, J.; Surdo, A.; Suter, L.; Sutton, K.; Suvorov, Y.; Svoboda, R.; Swain, S. K.; Sweeney, C.; Szczerbinska, B.; Szelc, A. M.; Sztuc, A.; Taffara, A.; Talukdar, N.; Tamara, J.; Tanaka, H. A.; Tang, S.; Taniuchi, N.; Tapia Casanova, A. M.; Tapper, A.; Tariq, S.; Tarpara, E.; Tatar, E.; Tayloe, R.; Tedeschi, D.; Teklu, A. M.; Tena Vidal, J.; Tennessen, P.; Tenti, M.; Terao, K.; Terranova, F.; Testera, G.; Thakore, T.; Thea, A.; Thomas, S.; Thompson, A.; Thorn, C.; Thorpe, C.; Timm, S. C.; Tiras, E.; Tishchenko, V.; Tiwari, S.; Todorović, N.; Tomassetti, L.; Tonazzo, A.; Torbunov, D.; Torres Muñoz, D.; Torti, M.; Tortola, M.; Torun, Y.; Tosi, N.; Totani, D.; Toups, M.; Touramanis, C.; Tran, D.; Travaglini, R.; Trevor, J.; Triller, E.; Trilov, S.; Truchon, J.; Truncali, D.; Trzaska, W. H.; Tsai, Y.; Tsai, Y.-T.; Tsamalaidze, Z.; Tsang, K. V.; Tsverava, N.; Tu, S. Z.; Tufanli, S.; Tunnell, C.; Turner, J.; Tuzi, M.; Tyler, J.; Tyley, E.; Tzanov, M.; Uchida, M. A.; Ureña González, J.; Urheim, J.; Usher, T.; Utaegbulam, H.; Uzunyan, S.; Vagins, M. R.; Vahle, P.; Valdiviesso, G. A.; Vale, V.; Valencia, E.; Valentim, R.; Vallari, Z.; Vallazza, E.; Valle, J. W. F.; Van Berg, R.; Forero, D. V.; Vannozzi, A.; Van Nuland-Troost, M.; Varanini, F.; Vargas Auccalla, T.; Vargas Oliva, D.; Vaughan, N.; Vaziri, K.; Vázquez-Ramos, A.; Vega, J.; Vences, J.; Ventura, S.; Verdugo, A.; Vergani, S.; Verzocchi, M.; Vetter, K.; Vicenzi, M.; Vieira de Souza, H.; Vignoli, C.; Vilela, C.; Villa, E.; Viola, S.; Viren, B.; Vizarreta, R.; Vizcaya Hernandez, A. P.; Vlachos, S.; Vorobyev, G.; Vuong, Q.; Waldron, A. V.; Wallach, M.; Walsh, J.; Walton, T.; Wan, L.; Wang, B.; Wang, H.; Wang, J.; Wang, L.; Wang, M. H. L. S.; Wang, X.; Wang, Y.; Warburton, K.; Warner, D.; Warsame, L.; Wascko, M. O.; Waters, D.; Watson, A.; Wawrowska, K.; Weber, A.; Weber, C. M.; Weber, M.; Wei, H.; Weinstein, A.; Westerdale, S.; Wetstein, M.; Whalen, K.; White, A.; Whitehead, L. H.; Whittington, D.; Wieler, F.; Wilhlemi, J.; Wilking, M. J.; Wilkinson, A.; Wilkinson, C.; Wilson, F.; Wilson, R. J.; Winter, P.; Wolcott, J.; Wolfs, J.; Wongjirad, T.; Wood, A.; Wood, K.; Worcester, E.; Worcester, M.; Wresilo, K.; Wrobel, M.; Wu, S.; Wu, W.; Wu, W.; Wurm, M.; Wyenberg, J.; Wynne, B. M.; Xiao, Y.; Xiotidis, I.; Yaeggy, B.; Yahlali, N.; Yandel, E.; Yang, J.; Yang, T.; Yankelevich, A.; Yates, L.; Yonehara, K.; Young, T.; Yu, B.; Yu, H.; Yu, J.; Yu, Y.; Yuan, W.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zapata, O.; Zazueta, L.; Zeller, G. P.; Zennamo, J.; Zettlemoyer, J.; Zeug, K.; Zhang, C.; Zhang, S.; Zhao, M.; Zhivun, E.; Zimmerman, E. D.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R. (2025-06-25)
    The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.
  • CUPID, the Cuore upgrade with particle identification
    Alfonso, Krystal; Armatol, A.; Augier, C.; Avignone III, F. T.; Azzolini, O.; Barabash, A. S.; Bari, G.; Barresi, A.; Baudin, D.; Bellini, F.; Benato, G.; Benussi, L.; Berest, V.; Beretta, M.; Bergé, L.; Bettelli, M.; Biassoni, M.; Billard, J.; Boffelli, F.; Boldrini, V.; Brandani, E. D.; Brofferio, C.; Bucci, C.; Buchynska, M.; Camilleri, J.; Campani, A.; Cao, J.; Capelli, C.; Capelli, S.; Caracciolo, V.; Cardani, L.; Carniti, P.; Casali, N.; Celi, E.; Chang, C.; Chapellier, M.; Chen, H.; Chiesa, D.; Cintas, D.; Clemenza, M.; Colantoni, I.; Copello, S.; Cremonesi, O.; Creswick, R. J.; D’Addabbo, A.; Dafinei, I.; Danevich, F. A.; De Dominicis, F.; De Jesus, M.; de Marcillac, P.; Dell’Oro, S.; Di Domizio, S.; Di Lorenzo, S.; Dixon, T.; Drobizhev, A.; Dumoulin, L.; El Idrissi, M.; Faverzani, M.; Ferri, E.; Ferri, F.; Ferroni, F.; Figueroa-Feliciano, E.; Formaggio, J.; Franceschi, A.; Fu, S.; Fujikawa, B. K.; Gascon, J.; Ghislandi, S.; Giachero, A.; Girola, M.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Grant, C.; Gras, P.; Guillaumon, P. V.; Gutierrez, T. D.; Han, K.; Hansen, E. V.; Heeger, K. M.; Helis, D. L.; Huang, H. Z.; Hurst, M. T.; Imbert, L.; Juillard, A.; Karapetrov, G.; Keppel, G.; Khalife, H.; Kobychev, V. V.; Kolomensky, Yu. G.; Kowalski, R.; Lattaud, H.; Lefevre, M.; Lisovenko, M.; Liu, R.; Liu, Y.; Loaiza, P.; Ma, L.; Mancarella, F.; Manenti, N.; Mariani, A.; Marini, L.; Marnieros, S.; Martinez, M.; Maruyama, R. H.; Mas, Ph.; Mayer, D.; Mazzitelli, G.; Mazzola, E.; Mei, Y.; Moore, M. N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nones, C.; Norman, E. B.; Novosad, V.; Nutini, I.; O’Donnell, T.; Olivieri, E.; Olmi, M.; Oregui, B. T.; Pagan, S.; Pageot, M.; Pagnanini, L.; Pasciuto, D.; Pattavina, L.; Penek, Ö.; Peng, H.; Pessina, G.; Pettinacci, V.; Pira, C.; Pirro, S.; Pochon, O.; Poda, D. V.; Polakovic, T.; Polischuk, O. G.; Pottebaum, E. G.; Pozzi, S.; Previtali, E.; Puiu, A.; Puranam, S.; Quitadamo, S.; Rappoldi, A.; Raselli, G. L.; Ressa, A.; Rizzoli, R.; Rosenfeld, C.; Rosier, P.; Rossella, M.; Scarpaci, J. A.; Schmidt, B.; Serino, R.; Shaikina, A.; Shang, K.; Sharma, V.; Shlegel, V. N.; Singh, V.; Sisti, M.; Slocum, P.; Speller, D.; Surukuchi, P. T.; Taffarello, L.; Tomassini, S.; Tomei, C.; Torres, A.; Torres, J. A.; Tozzi, D.; Tretyak, V. I.; Trotta, D.; Velazquez, M.; Vetter, K. J.; Wagaarachchi, S. L.; Wang, G.; Wang, L.; Wang, R.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Xie, F.; Xue, M.; Yang, J.; Yefremenko, V.; Umatov, V. I.; Zarytskyy, M. M.; Zhu, T.; Zolotarova, A.; Zucchelli, S. (2025-07-03)
    CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ( 0 ν β β ) and other rare events using enriched Li 2 100 MoO 4 scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for 0 ν β β of 100 Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10 - 4  cts / ( keV · kg · yr ) , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of 1.8 · 10 27  yr, corresponding to an effective Majorana neutrino mass ( m β β ) sensitivity of 9–15 meV, and a 3 σ discovery sensitivity of 1 · 10 27  yr, corresponding to an m β β range of 12–21 meV.