Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Computer Science
    • Computer Science Technical Reports
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Reduction using a Singular Value Decomposition for the Iterative Guided Spectral Class Rejection Hybrid Classifier

    Thumbnail
    View/Open
    svdIEEETGRS07.pdf (2.442Mb)
    Downloads: 2765
    TR number
    TR-07-17
    Date
    2007
    Author
    Phillips, Rhonda D.
    Watson, Layne T.
    Wynne, Randolph H.
    Blinn, Christine E.
    Metadata
    Show full item record
    Abstract
    Feature reduction in a remote sensing dataset is often desirable to decrease the processing time required to perform a classification and improve overall classification accuracy. This work introduces a feature reduction method based on the singular value decomposition (SVD). This feature reduction technique was applied to training data from two multitemporal datasets of Landsat TM/ETM+ imagery acquired over a forested area in Virginia, USA and Rondonia, Brazil. Subsequent parallel iterative guided spectral class rejection (pIGSCR) forest/nonforest classifications were performed to determine the quality of the feature reduction. The classifications of the Virginia data were five times faster using SVDbased feature reduction without affecting the classification accuracy. Feature reduction using the SVD was also compared to feature reduction using principal components analysis (PCA). The highest average accuracies for the Virginia dataset (88.34%) and for the Rondonia dataset (93.31%) were achieved using the SVD. The results presented here indicate that SVDbased feature reduction can produce statistically significantly better classifications than PCA.
    URI
    http://hdl.handle.net/10919/19735
    Collections
    • Computer Science Technical Reports [1036]
    • Technical Reports, Center for Environmental Applications of Remote Sensing (CEARS) [3]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us