The system will be unavailable due to maintenance on Thursday July 19 from 7:00-8:30 am ET.

Show simple item record

dc.contributor.authorYuzhen, Geen_US
dc.contributor.authorCollins, Emmanuel G.en_US
dc.contributor.authorWatson, Layne T.en_US
dc.contributor.authorDavis, L. D.en_US
dc.descriptionIn control system analysis and design, finding a reduced order model, optimal in the L-squared sense, to a given system model is a fundamental problem. The problem is very difficult without the global convergence of homotopy methods, and a homotopy based approach has been proposed. The issues are the number of degrees of freedom, the well posedness of the finite dimensional optimization problem, and the numerical robustness of the resulting homotopy algorithm. A homotopy algorithm based on the input normal form characterization of the reduced order model is developed here and is compared with the homotopy algorithms based on Hyland and Bernstein's optimal projection equations. The main conclusions are that the input normal form algorithm can be very efficient, but can also be very ill conditioned or even fail.en_US
dc.publisherDepartment of Computer Science, Virginia Polytechnic Institute & State Universityen_US
dc.relation.ispartofHistorical Collection(Till Dec 2001)en_US
dc.titleAn Input Normal Form Homotopy for the L2 Optimal Model Order Reduction Problemen_US
dc.typeTechnical reporten_US

Files in this item


This item appears in the following Collection(s)

Show simple item record