Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Computer Science
    • Computer Science Technical Reports
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Computer Science
    • Computer Science Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Beyond Software Performance Visualization

    Thumbnail
    View/Open
    TR-94-07.ps (405.4Kb)
    Downloads: 102
    TR number
    TR-94-07
    Date
    1994-02-01
    Author
    Abrams, Marc
    Lee, Timothy
    Cadiz, Horacio
    Ganugapati, Krishna
    Metadata
    Show full item record
    Abstract
    Performance visualization tools of the last decade have yielded new insights into the new behavior of sequential, parallel, and distributed programs. However, they have three inherent limitations: (1) They only display what happened in one execution of a program. (This is dangerous when analyzing concurrent applications, which are prone to non-deterministic behavior.) (2) A human uses one or more bandwidth-limited senses with a visualization tool. (This limits the scalability of a visualization tool.) (3) The relationship of "interesting" program events are often separated in time by other events; thus discerning time dependent behavior often hinges on finding the "right" visualization - a possibly time-comsuming activity. CHITRA93 complements visualization systems, while alleviating these limitations. CHITRA93 analyzes a set (or ensemble) of traces by combining the visualization of a few traces with a statistical analysis of the entire ensemble (overcoming (1)); and reduces the ensemble to empirical models that capture the time dependent relationships of "interesting" program events through application, programming language, and computer architecture independent analysis tools (addressing (2) and (3)). CHITRA93 incorporates: transforms, such as aggregation, that simplify the ensemble and reduce the state space size of the models generated; a user interface that allows some transforms to be selected by editing the visualization with a mouse; homogeneity tests that allow partitioning of an ensemble; an efficient semi-Markov model generation algorithm whose computation time is linear in the sum of the lengths of the traces comprising the ensemble; and a CHAID-based model that can fathom non-Markovian relationships among transitions in the traces. The use of CHITRA93 is demonstrated by partitioning ten parallel database traces with nearly 8,000 states into two homogeneous subsets, each modeled by a 20 state irreducible, periodic (non-Markovian) stochastic process.
    URI
    http://hdl.handle.net/10919/19869
    Collections
    • Computer Science Technical Reports [1036]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us