Stream nutrient uptake, forest succession, and biogeochemical theory
Abstract
Theories of forest succession predict a close relationship between net biomass increment and catchment nutrient retention. Retention, therefore, is expected to be greatest during aggrading phases of forest succession. In general, studies of this type have compared watershed retention efficiency by monitoring stream nutrient export at the base of the catchment. As such, streams are viewed only as transport systems. Contrary to this view, the nutrient spiraling concept emphasizes transformation and retention of nutrients within stream ecosystems. In this paper, we address how biogeochemical theory developed for forests may apply to lotic ecosystems in the context of catchment-level succession. Using measures of nutrient spiraling to document uptake, we focus on later seral stages by comparing streams draining second-growth (i.e., 75-100-yr stands) and old-growth (i.e., >400 yr) forests of the southern Appalachian Mountains, USA. Standing stocks of large woody debris (LWD) in old-growth streams were orders of magnitude greater than in second-growth streams where logging practices removed LWD from stream channels. Debris dams were also more frequent in old-growth streams. Solute injections were used to quantify retention of dissolved inorganic phosphate (PO4-P), the limiting nutrient in Appalachian streams. Uptake velocities in old-growth streams were significantly greater than in second-growth streams and were closely related to debris dam frequency, LWD volume, and the proportion of fine-grained (<2 mm) sediments present in the stream bed. These data suggest that streams of old-growth forests have greater demand for PO4-P compared to streams draining aggrading second-growth catchments. Finally, we present a schematic model of forest succession, aquatic-terrestrial interaction, and biogeochernical functioning in stream ecosystems emphasizing that the successional time course of retention in lotic ecosystems may be very different than that predicted for forests.
Collections
Related items
Showing items related by title, author, creator and subject.
-
The Development of a Stream Restoration Decision Support Tool for the County of Henrico Stream Assessment and Watershed Management Program
Sweet, Dan I. (Virginia Tech, 2003-09-05)Several Municipalities in Virginia are currently developing and implementing watershed programs. While programmatic goals and objectives vary, all seek to incorporate stream restoration project work. Decision support tools ... -
Transition from pasture to native forest land-use along stream continua: Effects on stream ecosystems and implications for restoration
Scarsbrook, M. R.; Halliday, J. (Wellington, New Zealand: Royal Society of New Zealand, 1999)Three first-order, hill country, pasture streams in Waikato, New Zealand, were chosen to investigate the effects of patches of late-succession indigenous riparian forest on water quality, epilithon, stream morphology, and ... -
Evaluating Watershed and Stream-Channel Drivers of In-Stream Turbidity in Virginia and North Carolina
Pratt, Elizabeth Anne (Virginia Tech, 2020-09-18)Accurately predicting sediment delivery has been a long-standing problem in the field of water resource management. Many different watershed equations and models have been developed such as the Universal Soil Loss Equation ...