Show simple item record

dc.contributorVirginia Tech
dc.contributor.authorKlaus, M.
dc.date.accessioned2014-04-09T18:12:24Z
dc.date.available2014-04-09T18:12:24Z
dc.date.issued1990-01
dc.identifier.citationKlaus, M., "on the Levinson theorem for Dirac operators," J. Math. Phys. 31, 182 (1990); http://dx.doi.org/10.1063/1.528858
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/10919/47071
dc.description.abstractFor the Dirac equation with potential V(r) obeying ∫∞ 0(1+r)‖V(r)‖d r<∞ we prove a relativistic version of Levinson’s theorem that relates the number of bound states in the spectral gap [−m,m] to the variation of an appropriate phase along the continuous part of the spectrum. In the process, the asymptotic properties of the Jost function as E→±m are analyzed in detail. The connection with the nonrelativistic version of Levinson’s theorem is also established.
dc.language.isoen_US
dc.publisherAIP Publishing
dc.subjectdirac equation
dc.subjectnumber theory
dc.subjectoperator theory
dc.subjectbound states
dc.titleon the Levinson theorem for Dirac operators
dc.typeArticle
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/31/1/10.1063/1.528858
dc.date.accessed2014-03-20
dc.title.serialJournal of Mathematical Physics
dc.identifier.doihttps://doi.org/10.1063/1.528858


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record