Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Three-Dimensional Interaction of a Vortex Pair with a Wall

    Thumbnail
    View/Open
    Main article (728.3Kb)
    Downloads: 1515
    Date
    1997-10-01
    Author
    Luton, J. A.
    Ragab, Saad A.
    Metadata
    Show full item record
    Abstract
    The interaction of vortices passing near a solid surface has been examined using direct numerical simulation. The configuration studied is a counter-rotating vortex pair approaching a wall in an otherwise quiescent fluid. The focus of these simulations is on the three-dimensional effects, of which little is known. To the authors' knowledge, this is the first three-dimensional simulation that lends support to the short-wavelength instability of the secondary vortex. It has been shown how this Crow-type instability leads to three dimensionality after the rebound of a vortex pair. The growth of the instability of the secondary vortex in the presence of the stronger primary vortex leads to the turning and intense stretching of the secondary vortex. As the instability grows the secondary vortex is bent, stretched, and wrapped around the stronger primary. During this process reconnection was observed between the two secondary vortices. Reconnection also begins between the primary and secondary vortices but the weaker secondary vortex dissipates before the primary, leaving reconnection incomplete. Evidence is presented for a new type of energy cascade based on the short-wavelength instability and the formation of continual smaller vortices at the wall. Ultimately the secondary vortex is destroyed by stretching and dissipation leaving the primary vortex with a permanently distorted shape but relatively unaffected strength compared to an isolated vortex. (C) 1997 American Institute of Physics.
    URI
    http://hdl.handle.net/10919/47668
    Collections
    • Scholarly Works, Department of Biomedical Engineering and Mechanics [438]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us