Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Neutron and x-ray diffraction study of cubic [111] field-cooled Pb(Mg1/3Nb2/3)O-3

    Thumbnail
    View/Open
    Main article (383.4Kb)
    Downloads: 362
    Date
    2007-08-01
    Author
    Stock, Chris
    Xu, Guangyong
    Gehring, Peter M.
    Luo, Hongjie
    Zhao, X.
    Cao, Hu
    Li, Jiefang
    Viehland, Dwight D.
    Shirane, Gen
    Metadata
    Show full item record
    Abstract
    Neutron and x-ray diffraction techniques have been used to study the competing long- and short-range polar order in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O-3 (PMN) under a [111] applied electric field. Despite reports of a structural transition from a cubic phase to a rhombohedral phase for fields E>1.7 kV/cm, we find that the bulk unit cell remains cubic (within a sensitivity of 90 degrees-alpha=0.03 degrees) for fields up to 8 kV/cm. Furthermore, we observe a structural transition confined to the near surface volume or "skin" of the crystal where the cubic cell is transformed to a rhombohedral unit cell at T-c=210 K for E>4 kV/cm, for which 90 degrees-alpha=0.08 +/- 0.03 degrees below 50 K. While the bulk unit cell remains cubic, a suppression of the diffuse scattering and concomitant enhancement of the Bragg peak intensity is observed below T-c=210 K, indicating a more ordered structure with increasing electric field yet an absence of a long-range ferroelectric ground state in the bulk. The electric field strength has little effect on the diffuse scattering above T-c, however, below T-c the diffuse scattering is reduced in intensity and adopts an asymmetric line shape in reciprocal space. The absence of hysteresis in our neutron measurements (on the bulk) and the presence of two distinct temperature scales suggests that the ground state of PMN is not a frozen glassy phase as suggested by some theories but is better understood in terms of random fields introduced through the presence of structural disorder. Based on these results, we also suggest that PMN represents an extreme example of the two-length scale problem, and that the presence of a distinct skin may be necessary for a relaxor ground state.
    URI
    http://hdl.handle.net/10919/47866
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [398]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us