Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • Fralin Life Sciences Institute
    • Scholarly Works, Fralin Life Sciences Institute
    • View Item
    •   VTechWorks Home
    • Fralin Life Sciences Institute
    • Scholarly Works, Fralin Life Sciences Institute
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean

    Thumbnail
    View/Open
    journal_pone_0020172.pdf (382.2Kb)
    Downloads: 238
    Date
    2011-07-14
    Author
    Dong, Suomeng
    Yu, Dan
    Cul, Linkai
    Qutob, Dinah
    Tedman-Jones, Jennifer
    Kale, Shiv D.
    Tyler, Brett M.
    Wang, Yuanchao
    Gijzen, Mark
    Metadata
    Show full item record
    Abstract
    The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and cobombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allelespecific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5.
    URI
    http://hdl.handle.net/10919/48982
    Collections
    • Scholarly Works, Fralin Life Sciences Institute [542]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us