VTechWorks staff will be away for the Memorial Day holiday on Monday, May 27, and will not be replying to requests at that time. Thank you for your patience.

Show simple item record

dc.contributor.authorMarburg, T. Laurelen_US
dc.contributor.authorHickman, Jeffrey S.en_US
dc.contributor.authorHanowski, Richard J.en_US
dc.date.accessioned2015-05-06T15:12:03Z
dc.date.available2015-05-06T15:12:03Z
dc.date.issued2015-01-28en_US
dc.identifier.urihttp://hdl.handle.net/10919/51270
dc.description.abstractAt the heart of traffic safety is the identification of factors that lead to crashes. With this knowledge, interventions can be developed to mitigate or prevent these factors from occurring in the future. Post hoc reconstructions of crashes (e.g., the Large Truck Crash Causation Study; LTCCS) and naturalistic driving studies have provided information on crash genesis. However, there is another source of driving data that is currently untapped. Today, numerous commercial vehicle fleets, transit fleets, and personal vehicles use onboard safety monitoring (OBSM) systems to monitor and improve driving behavior. Data from these video-based OBSM systems could be used by researchers to learn more about crash genesis and address some of the limitations inherent in post-crash reconstruction. This study created a data directory of common data elements in the LTCCS, commercially available, video-based OBSM systems, and other public sources to be used together to provide researchers with more valid and reliable information on crash genesis. Researchers used the LTCCS codebook as the structure of the new data directory. The LTCCS variables were analyzed by a trained researcher, who determined whether the variable could be collected with an OBSM system or through related information by using one of three responses: yes, no, and maybe. Lytx™ and SmartDrive were used as comparison OBSM system vendors to determine the kind and types of data they can capture. Other related sources such as Police Accident Reports (PARs) were used as possible sources of information for each variable when relevant. If a variable was labeled as “MAYBE,” the conditions under which the variable could be captured by a video-based OBSM system or through related information were outlined. Analysis determined that approximately half of all 802 variables in the LTCCS codebook could be captured using video-based OBSM systems and related information. In addition, another almost 30% of the variables were labeled as “MAYBE.” An analysis of the data collected in the actual LTCCS revealed that only 75% of the crashes had data and 48% of the variables had the option to be coded as “unknown.” Based on the results in the current report, it appears that the use of OBSM systems and other data sources could yield a similar amount of data as that obtained by data analysts in the LTCCS.en_US
dc.description.sponsorshipNational Surface Transportation Safety Center for Excellenceen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dc.relation.ispartofNSTSCE;15-UI-031en_US
dc.rightsCC0 1.0 Universalen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en_US
dc.subjectLarge Truck Crash Causation Study (LTCCS)en_US
dc.subjectCrash genesisen_US
dc.subjectOnboard safety monitoring systems (OBSM)en_US
dc.subjectNaturalistic driving studiesen_US
dc.titleCommon Data Elements between the Large Truck Crash Causation Study Investigations and Commercially Available Onboard Monitoring Systemsen_US
dc.typeReporten_US
dc.type.dcmitypeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
License: CC0 1.0 Universal
VersionItemEditorDateSummary

*Selected version