Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetics and thermodynamics of the ferroelectric transitions in PbMg1/3Nb2/3O3 and PbMg1/3Nb2/3O3-12% PbTiO3 crystals

    Thumbnail
    View/Open
    2013_Kinetics_thermodynamics_ferroelectric.pdf (4.697Mb)
    Downloads: 206
    Date
    2013-05-14
    Author
    Colla, Eugene V.
    Jurik, Nathan
    Liu, Yehan
    Delgado, Miguel
    Weissman, Michael B.
    Viehland, Dwight D.
    Ye, Zuo-Guang
    Metadata
    Show full item record
    Abstract
    The two-step freezing and melting of the field-induced ferroelectric order in PbMg1/3Nb2/3O3 (PMN) and (PbMg1/3Nb2/3O3)(0.88)(PbTiO3)(0.12) (PMN-PT) is investigated. In PMN-PT, direct microscopic images show that both steps occur in the same spatial regions. The higher temperature freezing corresponds to the higher temperature melting, indicating that the stages are not just kinetically but also thermodynamically distinct. The higher-T melting step shows several indications of being a sharp first-order transition near an equilibrium temperature. The lower-T melting step shows more kinetic dependence. Partially poled PMN also spontaneously approaches saturation polarization on zero-field aging, indicating that the true equilibrium state is ferroelectric below similar to 200 K. In PMN-PT, a variety of kinetic measurements on the ferroelectric state indicate that the kinetics are governed by a glassy matrix showing aging effects. (C) 2013 AIP Publishing LLC.
    URI
    http://hdl.handle.net/10919/52400
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [408]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us