Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Temperature stability of the piezoelectric and elastic response of dc biased 001 and 110 oriented Pb(Zn1/3Nb2/3)O-3-PbTiO3 single crystals

    Thumbnail
    View/Open
    2004_Temperature_stability.pdf (417.1Kb)
    Downloads: 308
    Date
    2004-11-01
    Author
    Amin, Ahmed
    Viehland, Dwight D.
    Metadata
    Show full item record
    Abstract
    Temperature and field dependent investigations of the longitudinal electromechanical properties of [001]- and [110]-oriented 0.955Pb(Zn1/3Nb2/3)O-3-0.045PbTiO(3) single crystals have been performed. Electromechanical equivalence was found between [001] and [110] orientations in the ferroelectric rhombohedral FEr phase region, but not in the ferroelectric tetragonal FEt one. A dc bias of 0.4 MV/m did not affect this equivalence. Softening of the dielectric constant (K), piezoelectric coefficient (d(33)), and Young's modulus (Y) were observed along both the [001] and [110] orientations in the FEr phase region on heating towards the FEt one. Above the FEr-FEt phase transition, a significant anisotropy was observed in the electromechanical and elastic coefficients. These results demonstrate that the enhanced length extensional (33-mode) electromechanical coupling k(33) of rhombohedral crystals far from the morphotropic phase boundary is not constrained to the <001> orientation, but rather to the (110) plane. (C) 2004 American Institute of Physics.
    URI
    http://hdl.handle.net/10919/52498
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [393]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us