Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • Conference Proceedings
    • North American Wind Energy Academy 2015 Symposium
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • Conference Proceedings
    • North American Wind Energy Academy 2015 Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Large Eddy simulation of Trailing Edge Acoustic Emissions of an Airfoil

    Thumbnail
    View/Open
    3_Wu_etal.pdf (7.195Mb)
    Downloads: 17
    Date
    2015-06
    Author
    Wu, Jinlong
    Devenport, William J.
    Paterson, Eric G.
    Sun, Rui
    Xiao, Heng
    Metadata
    Show full item record
    Abstract
    The present investigation of trailing edge acoustic emission of an airfoil concerns the effects of the broadband noise generated by the interaction of turbulent boundary layer and airfoil trailing edge, and the tonal noise generated by the vortex shedding of trailing edge bluntness. Large eddy simulation (LES) is performed on an NACA0012 airfoil with blunt trailing edge at a Reynolds number Rec = 400; 000 based on the airfoil chord length for three different configurations with different angles of attack. In order to reproduce and compare with the result from experiment in the literature, numerical tripping is tested and chosen to control the boundary layer development to guarantee a similar boundary layer thickness near the airfoil trailing edge. The near wall region inside the boundary layer is directly resolved by LES simulation with Van Driest damping, in order to obtain the instantaneous data in that region. With these instantaneous data from aerodynamic simulation, the acoustic predication is conducted by the Curle's analogy, which is suitable for stationary surface in free ow. To validate the numerical solutions, both ow simulation and acoustic integration results are compared to experimental data and simulation results available in the literature, and good agreement is achieved. The aerodynamic results show that the similar boundary layer development of experimental result can be reproduced by simulation with a suitable choice of numerical tripping, and the similar instantaneous behavior of ow inside the boundary layer is therefore guaranteed, which is vital for the acoustic prediction. The aeroacoustic results show that the acoustic prediction changes with the lift and drag force provided by the airfoil. Basically speaking, it's a result that the unsteady force around the surface is closely related to the mean force provided by an airfoil, which means that the noise control of a given airfoil is coupled with the optimization of its aerodynamic performance. As for the approximation made in the implemetation of Curle's analogy, it is shown in the aeroacoustic results that the airfoil can be treated as a compact point only if low frequency acoustic emission is of interest, and such kind of approximation can cause obvious problem if very high frequency acoustic emission is concerned.
    URI
    http://hdl.handle.net/10919/54696
    Collections
    • North American Wind Energy Academy 2015 Symposium [82]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us