Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe

    Thumbnail
    Date
    2003
    Author
    Chikowo, R.
    Mapfumo, P.
    Nyamugafata, P.
    Giller, Ken
    Metadata
    Show full item record
    Abstract
    There is a need for an improved understanding of nitrogen (N) dynamics in depleted sandy soils in southern Africa. A field experiment was conducted to evaluate the performance of different soil fertility improvement practices on a degraded granitic sandy soil in Zimbabwe. Legumes capable of accumulating large amounts of N through biological N2 fixation and subsoil N capture were tested against soybean/maize rotation, cattle manure fertilization and continuous maize (Zea mays L) with or without fertilizer. Soybean (Glycine max) accumulated 82 kg ha.1 N (seed + stover), while mucuna (Mucuna pruriens) produced 87 kg ha.1 N in its biomass. Soybean fixed 76% of its N, while mucuna fixed 96% of the accumulated N as estimated by the 15N natural abundance method. Although the following maize crop in the second season suffered from drought stress, maize N uptake was 14.8 kg ha.1 following soybean and 16.4 kg ha.1 following mucuna, compared with 5.2 kg ha.1 for the unfertilized maize and 25.6 kg ha.1 for the maize fertilized with N at 90 kg ha.1. Cajanus cajan and Crotalaria paulina added barely 10 kg ha.1 of N through their biomass and had no effect on N uptake by maize. Apparent recovery of the added N by maize was 47% for the fertilized maize, 36% for soybean, 12% for mucuna and 9% for cattle manure. There was very little partitioning of N into grain and uptake was mostly before the onset of the drought. Despite the large differences in added residue N, differences in soil mineral N were only evident up to 4 weeks after the beginning of the rains, after which mineral N concentrations became very small in all treatments due to leaching, rather than crop uptake. By the eighth week after crop emergence, maize root length density had increased to about 0.1 cm cm.3 at the 60-80 cm depth, the rapid increase apparently stimulated by the drought. It was concluded that mineral N available to maize from the residues tested falls short of what is required to sustain high maize yields. In these environments where biomass accumulation in many legumes is restricted by soil biophysical factors (poor nutrient concentrations, acidity, coarse texture), combinations of legume rotations and mineral N fertilization will remain the most viable option for sustainable agriculture. © 2003 Elsevier B.V. All rights reserved.
    URI
    http://hdl.handle.net/10919/65929
    Collections
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase [3994]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us